Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Relapsed childhood high hyperdiploid acute lymphoblastic leukemia: presence of preleukemic ancestral clones and the secondary nature of microdeletions and RTK-RAS mutations

Abstract

Although childhood high hyperdiploid acute lymphoblastic leukemia is associated with a favorable outcome, 20% of patients still relapse. It is important to identify these patients already at diagnosis to ensure proper risk stratification. We have investigated 11 paired diagnostic and relapse samples with single nucleotide polymorphism array and mutation analyses of FLT3, KRAS, NRAS and PTPN11 in order to identify changes associated with relapse and to ascertain the genetic evolution patterns. Structural changes, mainly cryptic hemizygous deletions, were significantly more common at relapse (P<0.05). No single aberration was linked to relapse, but four deletions, involving IKZF1, PAX5, CDKN2A/B or AK3, were recurrent. On the basis of the genetic relationship between the paired samples, three groups were delineated: (1) identical genetic changes at diagnosis and relapse (2 of 11 cases), (2) clonal evolution with all changes at diagnosis being present at relapse (2 of 11) and (3) clonal evolution with some changes conserved, lost or gained (7 of 11), suggesting the presence of a preleukemic clone. This ancestral clone was characterized by numerical changes only, with structural changes and RTK-RAS mutations being secondary to the high hyperdiploid pattern.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Paulsson K, Johansson B . High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2009; 48: 637–660.

    Article  CAS  PubMed  Google Scholar 

  2. Heerema NA, Sather HN, Sensel MG, Zhang T, Hutchinson RJ, Nachman JB et al. Prognostic impact of trisomies of chromosomes 10, 17, and 5 among children with acute lymphoblastic leukemia and high hyperdiploidy (&gt;50 chromosomes). J Clin Oncol 2000; 18: 1876–1887.

    Article  CAS  PubMed  Google Scholar 

  3. Moorman AV, Richards SM, Martineau M, Luk Cheung K, Robinson HM, Reza Jalali G et al. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood 2003; 102: 2756–2762.

    Article  CAS  PubMed  Google Scholar 

  4. Forestier E, Heyman M, Andersen MK, Autio K, Blennow E, Borgström G et al. Outcome of ETV6/RUNX1-positive childhood acute lymphoblastic leukaemia in the NOPHO-ALL-1992 protocol: frequent late relapses but good overall survival. Br J Haematol 2008; 140: 665–672.

    Article  PubMed  Google Scholar 

  5. Pui C-H, Raimondi SC, Dodge RK, Rivera GK, Fuchs LA, Abromowitch M et al. Prognostic importance of structural chromosomal abnormalities in children with hyperdiploid (&gt;50 chromosomes) acute lymphoblastic leukemia. Blood 1989; 73: 1963–1967.

    CAS  PubMed  Google Scholar 

  6. Raimondi SC, Pui C-H, Hancock ML, Behm FG, Filatov L, Rivera GK . Heterogeneity of hyperdiploid (51–67) childhood acute lymphoblastic leukemia. Leukemia 1996; 10: 213–224.

    CAS  PubMed  Google Scholar 

  7. Forestier E, Johansson B, Gustafsson G, Borgström G, Kerndrup G, Johannsson J et al. Prognostic impact of karyotypic findings in childhood acute lymphoblastic leukaemia: a Nordic series comparing two treatment periods. Br J Haematol 2000; 110: 147–153.

    Article  CAS  PubMed  Google Scholar 

  8. Harris MB, Shuster JJ, Carroll A, Look AT, Borowitz MJ, Crist WM et al. Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor cell acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study. Blood 1992; 79: 3316–3324.

    CAS  PubMed  Google Scholar 

  9. Sutcliffe MJ, Shuster JJ, Sather HN, Camitta BM, Pullen J, Schultz KR et al. High concordance from independent studies by the Children's Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI standard-risk B-precursor acute lymphoblastic leukemia: a Children's Oncology Group (COG) initiative. Leukemia 2005; 19: 734–740.

    Article  CAS  PubMed  Google Scholar 

  10. Schultz KR, Pullen DJ, Sather HN, Shuster JJ, Devidas M, Borowitz MJ et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG). Blood 2007; 109: 926–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang JJ, Bhojwani D, Yang W, Cai X, Stocco G, Crews K et al. Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. Blood 2008; 112: 4178–4183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 2008; 322: 1377–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Molteni CG, te Kronnie G, Bicciato S, Villa T, Tartaglia M, Basso G et al. PTPN11 mutations in childhood acute lymphoblastic leukemia occur as a secondary event associated with high hyperdiploidy. Leukemia 2010; 24: 232–235.

    Article  CAS  PubMed  Google Scholar 

  14. Paulsson K, Cazier JB, Macdougall F, Stevens J, Stasevich I, Vrcelj N et al. Microdeletions are a general feature of adult and adolescent acute lymphoblastic leukemia: unexpected similarities with pediatric disease. Proc Natl Acad Sci USA 2008; 105: 6708–6713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Venkatraman ES, Olshen AB . A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 2007; 23: 657–663.

    Article  CAS  PubMed  Google Scholar 

  16. Lin M, Wei L-J, Sellers WR, Lieberfarb M, Wong WH, Li C . dChipSNP: significance curve and clustering of SNP-array-based loss-of-heterozygosity data. Bioinformatics 2004; 20: 1233–1240.

    Article  CAS  PubMed  Google Scholar 

  17. Paulsson K, Horvat A, Strömbeck B, Nilsson F, Heldrup J, Behrendtz M et al. Mutations of FLT3, NRAS, KRAS, and PTPN11 are frequent and possibly mutually exclusive in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2007; 47: 26–33.

    Article  Google Scholar 

  18. Strefford JC, Worley H, Barber K, Wright S, Stewart ARM, Robinson HM et al. Genome complexity in acute lymphoblastic leukemia is revealed by array-based comparative genomic hybridization. Oncogene 2007; 26: 4306–4318.

    Article  CAS  PubMed  Google Scholar 

  19. Davidsson J, Andersson A, Paulsson K, Heidenblad M, Isaksson M, Borg A et al. Tiling resolution array comparative genomic hybridization, expression and methylation analyses of dup(1q) in Burkitt lymphomas and pediatric high hyperdiploid acute lymphoblastic leukemias reveal clustered near-centromeric breakpoints and overexpression of genes in 1q22-32.3. Hum Mol Genet 2007; 16: 2215–2225.

    Article  CAS  PubMed  Google Scholar 

  20. Paulsson K, Heidenblad M, Mörse H, Borg Å, Fioretos T, Johansson B . Identification of cryptic aberrations and characterization of translocation breakpoints using array CGH in high hyperdiploid childhood acute lymphoblastic leukemia. Leukemia 2006; 20: 2002–2007.

    Article  CAS  PubMed  Google Scholar 

  21. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    Article  CAS  PubMed  Google Scholar 

  22. Secker-Walker LM, Alimena G, Bloomfield CD, Kaneko Y, Whang-Peng J, Arthur DC et al. Cytogenetic studies of 21 patients with acute lymphoblastic leukemia in relapse. Cancer Genet Cytogenet 1989; 40: 163–169.

    Article  CAS  PubMed  Google Scholar 

  23. Shikano T, Ishikawa Y, Ohkawa M, Hatayama Y, Nakadate H, Hatae Y et al. Karyotypic changes from initial diagnosis to relapse in childhood acute leukemia. Leukemia 1990; 4: 419–422.

    CAS  PubMed  Google Scholar 

  24. Abshire TC, Buchanan GR, Jackson JF, Shuster JJ, Brock B, Head D et al. Morphologic, immunologic and cytogenetic studies in children with acute lymphoblastic leukemia at diagnosis and relapse: a Pediatric Oncology Group study. Leukemia 1992; 6: 357–362.

    CAS  PubMed  Google Scholar 

  25. Heerema NA, Palmer CG, Weetman R, Bertolone S . Cytogenetic analysis in relapsed childhood acute lymphoblastic leukemia. Leukemia 1992; 6: 185–192.

    CAS  PubMed  Google Scholar 

  26. Vora AJ, Potter AM, Anderson LM, Lilleyman JS . Frequency and importance of change in blast cell karyotype in relapsing childhood lymphoblastic leukemia. Pediatr Hematol Oncol 1994; 11: 379–386.

    Article  CAS  PubMed  Google Scholar 

  27. Chucrallah AE, Stass SA, Huh YO, Albitar M, Kantarjian HM . Adult acute lymphoblastic leukemia at relapse. Cytogenetic, immunophenotypic, and molecular changes. Cancer 1995; 76: 985–991.

    Article  CAS  PubMed  Google Scholar 

  28. Case M, Matheson E, Minto L, Hassan R, Harrison CJ, Bown N et al. Mutation of genes affecting the RAS pathway is common in childhood acute lymphoblastic leukemia. Cancer Res 2008; 68: 6803–6809.

    Article  CAS  PubMed  Google Scholar 

  29. Sulong S, Moorman AV, Irving JAE, Strefford JC, Konn ZJ, Case MC et al. A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood 2009; 113: 100–107.

    Article  CAS  PubMed  Google Scholar 

  30. Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JGCAM, Peters STCM et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 2009; 10: 125–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009; 360: 470–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Panzer-Grümayer ER, Fasching K, Panzer S, Hettinger K, Schmitt K, Stöckler-Ipsiroglu S et al. Nondisjunction of chromosomes leading to hyperdiploid childhood B-cell precursor acute lymphoblastic leukemia is an early event during leukemogenesis. Blood 2002; 100: 347–349.

    Article  PubMed  Google Scholar 

  33. Maia AT, Tussiwand R, Cazzaniga G, Rebulla P, Colman S, Biondi A et al. Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood. Genes Chromosomes Cancer 2004; 40: 38–43.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Swedish Childhood Cancer Foundation, the Swedish Cancer Society and the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Davidsson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Data deposition: The microarray data are deposited in the ArrayExpress repository (http://www.ebi.ac.uk/microarray-as/ae/) with the ID E-MEXP-2333.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidsson, J., Paulsson, K., Lindgren, D. et al. Relapsed childhood high hyperdiploid acute lymphoblastic leukemia: presence of preleukemic ancestral clones and the secondary nature of microdeletions and RTK-RAS mutations. Leukemia 24, 924–931 (2010). https://doi.org/10.1038/leu.2010.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.39

Keywords

This article is cited by

Search

Quick links