Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

HDAC inhibitors augment cytotoxic activity of rituximab by upregulating CD20 expression on lymphoma cells

Abstract

Anti-CD20 antibody rituximab is now essential for the treatment of CD20-positive B-cell lymphomas. Decreased expression of CD20 is one of the major mechanisms underlying both innate and acquired resistance to rituximab. In this study, we show that histone deacetylase (HDAC) inhibitors augment the cytotoxic activity of rituximab by enhancing the surface expression of CD20 antigen on lymphoma cells. HDAC inhibitors, valproic acid (VPA) and romidepsin, increased CD20 expression at protein and mRNA levels in B-cell lymphoma cell lines with relatively low CD20 expression levels. The VPA-mediated increase in CD20 expression occurred at 1 m, which is clinically achievable and safe, but insufficient for inducing cell death. Chromatin immunoprecipitation assays revealed that HDAC inhibitors transactivated the CD20 gene through promoter hyperacetylation and Sp1 recruitment. HDAC inhibitors potentiated the activity of rituximab in complement-dependent cytotoxic assays. In mouse lymphoma models, HDAC inhibitors enhanced CD20 expression along with histone hyperacetylation in transplanted cells, and acted synergistically with rituximab to retard their growth. The combination with HDAC inhibitors may serve as an effective strategy to overcome rituximab resistance in B-cell lymphomas.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. LeBien TW, Tedder TF . B lymphocytes: how they develop and function. Blood 2008; 112: 1570–1580.

    Article  CAS  Google Scholar 

  2. Bonavida B . Rituximab-induced inhibition of antiapoptotic cell survival pathways: implications in chemo/immunoresistance, rituximab unresponsiveness, prognostic and novel therapeutic interventions. Oncogene 2007; 26: 3629–3636.

    Article  CAS  Google Scholar 

  3. Coiffier B . Rituximab therapy in malignant lymphoma. Oncogene 2007; 26: 3603–3613.

    Article  CAS  Google Scholar 

  4. Cheson B, Leonard JP . Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Engl J Med 2008; 359: 613–626.

    Article  CAS  Google Scholar 

  5. Smith MR . Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 2003; 22: 7359–7368.

    Article  CAS  Google Scholar 

  6. Hainsworth JD, Litchy S, Barton JH, Houston GA, Hermann RC, Bradof JE et al. Single-agent rituximab as first-line and maintenance treatment for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma: a phase II trial of the Minnie Pearl Cancer Research Network. J Clin Oncol 2003; 21: 1746–1751.

    Article  CAS  Google Scholar 

  7. Thomas DA, Faderl S, O’Brien S, Bueso-Ramos C, Cortes J, Garcia-Manero G et al. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer 2006; 106: 1569–1580.

    Article  CAS  Google Scholar 

  8. Johnson NA, Boyle M, Bashashati A, Leach S, Brooks-Wilson A, Sehn LH et al. Diffuse large B-cell lymphoma: reduced CD20 expression is associated with an inferior survival. Blood 2009; 113: 3773–3780.

    Article  CAS  Google Scholar 

  9. Kennedy GA, Tey S-K, Cobcroft R, Marlton P, Cull G, Grimmett K et al. Incidence and nature of CD20-negative relapses following rituximab therapy in aggressive B-cell non-Hodgkin's lymphoma: a retrospective review. Br J Haematol 2002; 119: 412–416.

    Article  CAS  Google Scholar 

  10. Ferreri AJ, Dognini GP, Verona C, Patriarca C, Doglioni C, Ponzoni M . Re-occurrence of the CD20 molecule expression subsequent to CD20-negative relapse in diffuse large B-cell lymphoma. Haematologica 2007; 92: e1–e2.

    Article  CAS  Google Scholar 

  11. Hiraga J, Tomita A, Sugimoto T, Shimada K, Ito M, Nakamura S et al. Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: its prevalence and clinical significance. Blood 2009; 113: 4885–4893.

    Article  CAS  Google Scholar 

  12. Esteller ME . Epigenetics in cancer. N Engl J Med 2008; 358: 1148–1159.

    Article  CAS  Google Scholar 

  13. Ropero S, Esteller M . The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 2007; 1: 19–25.

    Article  CAS  Google Scholar 

  14. Yang X-J, Seto E . The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 2008; 9: 206–218.

    Article  CAS  Google Scholar 

  15. Zhu P, Martin E, Mengwasser J, Schlag P, Janssen K-P, Gottlicher M . Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 2004; 5: 455–463.

    Article  CAS  Google Scholar 

  16. Kobayashi Y, Ohtsuki M, Murakami T, Kobayashi T, Sutheesophon K, Kitayama H et al. Histone deacetylase inhibitor FK228 suppresses the Ras-MAP kinase signaling pathway by upregulating Rap1 and induces apoptosis in malignant melanoma. Oncogene 2006; 25: 512–524.

    Article  CAS  Google Scholar 

  17. Wada T, Kikuchi J, Nishimura N, Shimizu R, Kitamura T, Furukawa Y . Expression levels of histone deacetylases determine the cell fate of hematopoietic progenitors. J Biol Chem 2009; 284: 30673–30683.

    Article  CAS  Google Scholar 

  18. Maiso P, Carvajal-Vergara X, Ocio EM, Lopez-Perez R, Mateo G, Gutlerrez N et al. The histone deacetylase inhibitor LBH589 is a potent antimyeloma agent that overcomes drug resistance. Cancer Res 2006; 66: 5781–5789.

    Article  CAS  Google Scholar 

  19. Kikuchi J, Wada T, Shimizu R, Izumi T, Akutsu M, Mitsunaga K et al. Histone deacetylases are critical targets of bortezomib-induced cytotoxicity in multiple myeloma. Blood, e-pub ahead of print 29 March 2010; doi:10.1182/blood-2009-07-235663.

    Article  CAS  Google Scholar 

  20. Xu WS, Parmigiani RB, Marks PA . Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 2007; 26: 5541–5552.

    Article  CAS  Google Scholar 

  21. Murakami T, Sato A, Chun NAL, Hara M, Naito Y, Kobayashi Y et al. Transcriptional modulation using HDACi depsipeptide promotes immune cell-mediated tumor destruction of murine B16 melanoma. J Invest Dermatol 2008; 128: 1506–1516.

    Article  CAS  Google Scholar 

  22. Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood 2008; 111: 1428–1436.

    Article  CAS  Google Scholar 

  23. Sutheesophon K, Nishimura N, Kobayashi Y, Furukawa Y, Kawano M, Itoh K et al. Involvement of the tumor necrosis factor (TNF)/TNF receptor system in leukemic cell apoptosis induced by histone deacetylase inhibitor depsipeptide (FK228). J Cell Physiol 2005; 203: 387–397.

    Article  CAS  Google Scholar 

  24. Lundqvist A, Abrams SI, Schrump DS, Alvarez G, Suffredin D, Berg M et al. Bortezomib and depsipeptide sensitize tumors to tumor necrosis factor-related apoptosis-inducing ligand: a novel method to potentiate natural killer cell tumor cytotoxicity. Cancer Res 2006; 66: 7317–7325.

    Article  CAS  Google Scholar 

  25. Maeda T, Towatari M, Kosugi H, Saito H . Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood 2000; 96: 3847–3856.

    CAS  PubMed  Google Scholar 

  26. Gialitakis M, Kretsovali A, Spilianakis C, Kravariti L, Mages J, Hoffmann R et al. Coordinated changes of histone modifications and HDAC mobilization regulate the induction of MHC class II genes by Trichostatin A. Nucleic Acids Res 2006; 34: 765–772.

    Article  CAS  Google Scholar 

  27. Suzuki O, Abe M . Cell surface N-glycosylation and sialylation regulate galectin-3-induced apoptosis in human diffuse large lymphoma. Oncol Rep 2008; 19: 743–748.

    CAS  PubMed  Google Scholar 

  28. Stein R, Qu Z, Chen S, Solis D, Hansen HJ, Goldenberg DM . Characterization of a humanized IgG4 anti-HLA-DR monoclonal antibody that lacks effector cell functions but retains direct antilymphoma activity and increases the potency of rituximab. Blood 2006; 108: 2736–2744.

    Article  CAS  Google Scholar 

  29. Kikuchi J, Shimizu R, Wada T, Ando H, Nakamura M, Ozawa K et al. E2F-6 suppresses growth-associated apoptosis of human hematopoietic progenitor cells by counteracting proapoptotic activity of E2F-1. Stem Cells 2007; 25: 2439–2447.

    Article  CAS  Google Scholar 

  30. Gillies SD, Lan Y, Williams S, Carr F, Forman S, Raubitschek A et al. An anti-CD20-IL-2 immunocytokine is highly efficacious in a SCID mouse model of established human B lymphoma. Blood 2005; 105: 3972–3978.

    Article  CAS  Google Scholar 

  31. Bertolini F, Fusetti L, Mancuso P, Gobbi A, Corsini C, Ferrucci PF et al. Endostatin, an antiangiogenic drug, induces tumor stabilization after chemotherapy or anti-CD20 therapy in a NOD/SCID mouse model of human high-grade non-Hodgkin lymphoma. Blood 2000; 96: 282–287.

    CAS  PubMed  Google Scholar 

  32. Haddad PM, Das A, Ashfaq M, Wieck A . A review of valproate in psychiatric practice. Expert Opin Drug Metab Toxicol 2009; 5: 539–551.

    Article  CAS  Google Scholar 

  33. Kuendgen A, Strupp C, Aivado M, Bernhardt A, Hildebrandt B, Haas R et al. Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood 2004; 104: 1266–1269.

    Article  CAS  Google Scholar 

  34. Kuendgen A, Schmid M, Schlenk R, Knipp S, Hildebrandt B, Steidl C et al. The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia. Cancer 2006; 106: 112–119.

    Article  CAS  Google Scholar 

  35. Tisdale JE, Tsuyuki RT, Oles KS, Penry JK . Relationship between serum concentration and dose of valproic acid during monotherapy in adult outpatients. Ther Drug Monitor 1992; 14: 416–423.

    Article  CAS  Google Scholar 

  36. Bryd JC, Marcucci G, Parthum MR, Xiao JJ, Klisovic RB, Moran M et al. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 2005; 105: 959–967.

    Article  Google Scholar 

  37. Fouladi M, Furman WL, Chin T, Freeman III BB, Dudkin L, Stewart CF et al. Phase I study of depsipeptide in pediatric patients with refractory solid tumors: a children's oncology group report. J Clin Oncol 2006; 24: 3678–3685.

    Article  CAS  Google Scholar 

  38. Klimek VN, Fircanis S, Maslak P, Guernah I, Baum M, Wu N et al. Tolerability, pharmacodynamics, and pharmacokinetics studies of depsipeptide (romidepsin) in patients with acute myelogenous leukemia or advanced myelodysplastic syndromes. Clin Cancer Res 2008; 14: 826–832.

    Article  CAS  Google Scholar 

  39. Sutheesophon K, Kobayashi Y, Takatoku M, Ozawa K, Kano Y, Furukawa Y . Histone deacetylase inhibitor depsipeptide (FK228) induces apoptosis in leukemic cells by facilitating mitochondrial translocation of Bax, which is enhanced by the proteasome inhibitor bortezomib. Acta Haematol 2006; 115: 78–90.

    Article  CAS  Google Scholar 

  40. Piekarz RL, Robey R, Sandor V, Bakke S, Wilson WH, Dahmoush L et al. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood 2001; 98: 2865–2868.

    Article  CAS  Google Scholar 

  41. Jilani I, O’Brien S, Manshuri T, Thomas DA, Thomazy VA, Imam M et al. Transient down-modulation of CD20 by rituximab in patients with chronic lymphocytic leukemia. Blood 2003; 102: 3514–3520.

    Article  CAS  Google Scholar 

  42. Lapalombella R, Yu B, Triantafillou G, Liu Q, Butchar JP, Lozanski G et al. Lenalidomide down-regulates the CD20 antigen and antagonizes direct and antibody-dependent cellular cytotoxicity of rituximab on primary chronic lymphocytic leukemia cells. Blood 2008; 112: 5180–5189.

    Article  CAS  Google Scholar 

  43. Thevenin C, Lucas BP, Kozlow EJ, Kehrl JH . Cell type- and stage-specific expression of the CD20/B1 antigen correlates with the activity of a diverged octamer DNA motif present in its promoter. J Biol Chem 1993; 268: 5949–5956.

    CAS  PubMed  Google Scholar 

  44. Himmelmann A, Riva A, Wilson GL, Lucas BP, Thevenin C, Kehrl JH . PU.1/Pip and basic helix loop helix zipper transcription factors interact with binding sites in the CD20 promoter to help confer lineage- and stage-specific expression of CD20 in B lymphocytes. Blood 1997; 90: 3984–3995.

    CAS  PubMed  Google Scholar 

  45. Corcoran LM, Karvelas M, Nossal GJV, Ye Z-S, Jacks T, Baltimore D . Oct-2, although not required for early B-cell development, is critical for later B-cell maturation and for postnatal survival. Genes Dev 1993; 7: 570–582.

    Article  CAS  Google Scholar 

  46. Tomita A, Hiraga J, Kiyoi H, Ninomiya M, Sugimoto T, Ito M et al. Epigenetic regulation of CD20 protein expression in a novel B-cell lymphoma cell line, RRBL1, established from a patient treated repeatedly with rituximab-containing chemotherapy. Int J Hematol 2007; 85: 49–57.

    Article  Google Scholar 

  47. Cruickshank MN, Fenwick E, Karimi M, Abraham LJ, Ulgiati D . Cell- and stage-specific chromatin structure across the complement receptor 2 (CR2/CD21) promoter coincide with CBF1 and C/EBP-β binding in B cells. Mol Immunol 2009; 46: 2613–2622.

    Article  CAS  Google Scholar 

  48. Maltzman JS, Carman JA, Monroe JG . Transcriptional regulation of the Icam-1 gene in antigen receptor- and phorbol ester-stimulated B lymphocytes: Role for transcription factor EGR1. J Exp Med 1996; 183: 1747–1759.

    Article  CAS  Google Scholar 

  49. Ikawa Y, Sugimoto N, Koizumi S, Yachie A, Saikawa Y . Dense methylation of types 1 and 2 regulatory regions of the CD10 gene promoter in infant acute lymphoblastic leukemia with MLL/AF4 fusion gene. J Pediatr Hematol Oncol 2010; 32: 4–10.

    Article  CAS  Google Scholar 

  50. Kudo S . Methyl-CpG-binding protein MeCP2 represses Sp1-activated transcription of the human leukosialin gene when the promoter is methylated. Mol Cell Biol 1998; 18: 5492–5499.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the High-Tech Research Center Project for Private Universities: Matching Fund Subsidy from MEXT 2002-2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Furukawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, R., Kikuchi, J., Wada, T. et al. HDAC inhibitors augment cytotoxic activity of rituximab by upregulating CD20 expression on lymphoma cells. Leukemia 24, 1760–1768 (2010). https://doi.org/10.1038/leu.2010.157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.157

Keywords

This article is cited by

Search

Quick links