Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Chronic myeloproliferative diseases with and without the Ph chromosome: some unresolved issues

Abstract

Ph-positive chronic myeloid leukemia (CML) and Ph-negative chronic myeloproliferative diseases (MPDs), characterized in many cases by the presence of the JAK2V617F mutation, have many features in common and yet also show fundamental differences. In this review, we pose five discrete and related questions relevant to both categories of hematological malignancy, namely: What are the mechanisms that underlie disease progression from a relatively benign or chronic phase? By what therapeutic methods might one target residual leukemia stem cells in CML? Is JAK2V617F the original molecular event in MPD? What epigenetic events must have a role in dictating disease phenotype in MPDs? And finally, Will the benefits conferred by current or future JAK2V617F inhibitors equal or even surpass the clinical success that has resulted from the use of tyrosine kinase inhibitors in CML? These and others questions must be addressed and in some cases should be answered in the foreseeable future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    CAS  PubMed  Google Scholar 

  2. Hochhaus A, O’Brien SG, Guilhot F, Druker BJ, Branford S, Foroni L et al. Six-year follow-up of patients receiving imatinib for first-line treatment of chronic myeloid leukemia. Leukemia 2009; 23: 1054–1061.

    CAS  PubMed  Google Scholar 

  3. Giles FJ, DeAngelo DJ, Baccarani M, Deininger M, Guilhot F, Hughes T et al. Optimizing outcomes for patients with advanced disease in chronic myelogenous leukemia. Semin Oncol 2008; 35 (1 Suppl 1): S1–17; quiz S18–20.

    CAS  PubMed  Google Scholar 

  4. Shah NP . Advanced CML: therapeutic options for patients in accelerated and blast phases. J Natl Compr Canc Netw 2008; 6 (Suppl 2): S31–S36.

    CAS  PubMed  Google Scholar 

  5. Melo JV, Barnes DJ . Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 2007; 7: 441–453.

    CAS  PubMed  Google Scholar 

  6. Calabretta B, Perrotti D . The biology of CML blast crisis. Blood 2004; 103: 4010–4022.

    CAS  PubMed  Google Scholar 

  7. Quintas-Cardama A, Cortes J . Molecular biology of BCR-ABL1-positive chronic myeloid leukemia. Blood 2009; 113: 1619–1630.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mullighan CG, Radtke I, Zhang J, Phillips LA, Su X, Ma J et al. Genome-wide analysis of genetic alterations in chronic myelogenous leukemia. Blood 2008; 112: 367 (Abstract 1089).

    Google Scholar 

  9. Dash AB, Williams IR, Kutok JL, Tomasson MH, Anastasiadou E, Lindahl K et al. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc Natl Acad Sci USA 2002; 99: 7622–7627.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    CAS  PubMed  Google Scholar 

  11. Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 2794–2799.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF, Newton IG et al. Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci USA 2009; 106: 3925–3929.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 2008; 14: 238–249.

    CAS  PubMed  Google Scholar 

  14. Minami Y, Stuart SA, Ikawa T, Jiang Y, Banno A, Hunton IC et al. BCR-ABL-transformed GMP as myeloid leukemic stem cells. Proc Natl Acad Sci USA 2008; 105: 17967–17972.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 2009; 458: 776–779.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Samanta AK, Chakraborty SN, Wang Y, Kantarjian H, Sun X, Hood J et al. Jak2 inhibition deactivates Lyn kinase through the SET-PP2A-SHP1 pathway, causing apoptosis in drug-resistant cells from chronic myelogenous leukemia patients. Oncogene 2009; 28: 1669–1681.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S et al. The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 2005; 8: 355–368.

    CAS  PubMed  Google Scholar 

  18. Perrotti D, Neviani P . From mRNA metabolism to cancer therapy: chronic myelogenous leukemia shows the way. Clin Cancer Res 2007; 13: 1638–1642.

    CAS  PubMed  Google Scholar 

  19. Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K et al. BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet 2002; 30: 48–58.

    CAS  PubMed  Google Scholar 

  20. Neviani P, Santhanam R, Ma Y, Marcucci G, Byrd JC, Chen C-S et al. Activation of PP2A by FTY720 inhibits survival and self-renewal of the Ph(+) chronic myelogenous leukemia (CML) CD34+/CD38– stem cell through the simultaneous suppression of BCR/ABL and BCR/ABL-independent signals. Blood 2008; 112: 77 (Abstract 189).

    Google Scholar 

  21. Coluccia AM, Vacca A, Dunach M, Mologni L, Redaelli S, Bustos VH et al. Bcr-Abl stabilizes beta-catenin in chronic myeloid leukemia through its tyrosine phosphorylation. EMBO J 2007; 26: 1456–1466.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Oehler V, Cummings C, Sabo K, Wood B, Guthrie K, Gooley T et al. Preferentially expressed antigen in melanoma (PRAME) expression in normal and CML CD34+ progenitor cells impairs myeloid differentiation. Blood 2008; 112: 392 (Abstract 1071).

    Google Scholar 

  23. Terragna C, Durante S, Astolfi A, Palandri F, Castagnetti F, Testoni N et al. Gene expression profile (GEP) of chronic myeloid leukemia (CML) patients at diagnosis: two distinguished subgroups of CML patients identified, based on a molecular signature, irrespective of their Sokal risk score. Blood 2008; 112: 1095 (Abstract 3190).

    Google Scholar 

  24. Perrotti D, Neviani P . Protein phosphatase 2A (PP2A), a drugable tumor suppressor in Ph1(+) leukemias. Cancer Metastasis Rev 2008; 27: 159–168.

    CAS  PubMed  Google Scholar 

  25. Nieborowska-Skorska M, Koptyra M, Hoser G, Regina R, Ngaba D, Bolton E et al. Mechanisms generating free radicals in CML stem/progenitor cell populations causing DNA damage and genomic instability. Blood 2008; 112: 78 (Abstract 192).

    Google Scholar 

  26. Barnes DJ, Palaiologou D, Panousopoulou E, Schultheis B, Yong AS, Wong A et al. Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res 2005; 65: 8912–8919.

    CAS  PubMed  Google Scholar 

  27. Koptyra M, Falinski R, Nowicki MO, Stoklosa T, Majsterek I, Nieborowska-Skorska M et al. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood 2006; 108: 319–327.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 2003; 101: 690–698.

    CAS  PubMed  Google Scholar 

  29. Huntly BJ, Reid AG, Bench AJ, Campbell LJ, Telford N, Shepherd P et al. Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood 2001; 98: 1732–1738.

    CAS  PubMed  Google Scholar 

  30. Lippert E, Laibe S, Mozziconacci M, Gervais C, Girault S, Gachard N et al. Loss of the Y chromosome in Philadelphia-positive cells predicts a poor response of CML patients to imatinib mesylate therapy. Blood 2008; 112: 737 (Abstract 2117).

    Google Scholar 

  31. Zhang S-J, Shi J-Y . GATA-2 L359V mutation is solely associated with CML progression but not other hematological malignancies. Blood 2008; 112: 536 (Abstract 1507).

    Google Scholar 

  32. Johansson B, Fioretos T, Mitelman F . Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol 2002; 107: 76–94.

    CAS  PubMed  Google Scholar 

  33. Kantarjian HM, Keating MJ, Talpaz M, Walters RS, Smith TL, Cork A et al. Chronic myelogenous leukemia in blast crisis. Analysis of 242 patients. Am J Med 1987; 83: 445–454.

    CAS  PubMed  Google Scholar 

  34. Cohen MH, Johnson JR, Pazdur R . US Food and Drug Administration Drug Approval Summary: conversion of imatinib mesylate (STI571; Gleevec) tablets from accelerated approval to full approval. Clin Cancer Res 2005; 11: 12–19.

    PubMed  Google Scholar 

  35. Su Chu, Allen L, McDonald T, Snyder DS, Forman SJ, Bhatia R . Persistence of leukemia stem cells in chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib treatment for 5 years. Blood 2008; 112: 79 (Abstract 194).

    Google Scholar 

  36. Michor F, Iwasa Y, Nowak MA . Dynamics of cancer progression. Nat Rev Cancer 2004; 4: 197–205.

    CAS  PubMed  Google Scholar 

  37. Pellicano F, Holyoake TL . Stem cells in chronic myeloid leukaemia. Cancer Biomark 2007; 3: 183–191.

    CAS  PubMed  Google Scholar 

  38. Rousselot P, Huguet F, Rea D, Legros L, Cayuela M, Maarek O et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 2007; 109: 58–60.

    CAS  PubMed  Google Scholar 

  39. Jorgensen HG, Copland M, Allan EK, Jiang X, Eaves A, Eaves C et al. Intermittent exposure of primitive quiescent chronic myeloid leukemia cells to granulocyte-colony stimulating factor in vitro promotes their elimination by imatinib mesylate. Clin Cancer Res 2006; 12: 626–633.

    CAS  PubMed  Google Scholar 

  40. Drummond MW, Heaney N, Kaeda J, Nicolini FE, Clark RE, Wilson G et al. A pilot study of continuous imatinib vs pulsed imatinib with or without G-CSF in CML patients who have achieved a complete cytogenetic response. Leukemia 2009; 23: 1199–1201, (E-pub ahead of print).

    CAS  PubMed  Google Scholar 

  41. Bellodi C, Lidonnici MR, Hamilton A, Helgason G, Soliera A, Ronchetti M et al. Targeting autophagy potentiates imatinib-induced cell death in Philadelphia positive cells including primary CML stem cells. Blood 2008; 112: 391 (Abstract 1070).

    Google Scholar 

  42. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia positive cells including primary CML stem cells. J Clin Invest 2009; 119: 1109–1123, pii: 35660. doi: 10.1172/JCI35660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Copland M, Pellicano F, Richmond L, Allan EK, Hamilton A, Lee FY et al. BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergises with tyrosine kinase inhibitors. Blood 2007; 111: 843–853.

    Google Scholar 

  44. Neviani P, Santhanam R, Oaks JJ, Eiring AM, Notari M, Blaser BW et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 2007; 117: 2408–2421.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008; 453: 1072–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    CAS  PubMed  Google Scholar 

  47. Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL . JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 2006; 108: 1652–1660.

    CAS  PubMed  Google Scholar 

  48. Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG . Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 2006; 107: 4274–4281.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bumm TG, Elsea C, Corbin AS, Loriaux M, Sherbenou D, Wood L et al. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res 2006; 66: 11156–11165.

    CAS  PubMed  Google Scholar 

  50. Zaleskas VM, Krause DS, Lazarides K, Patel N, Hu Y, Li S et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS ONE 2006; 1: e18.

    PubMed  PubMed Central  Google Scholar 

  51. Shide K, Shimoda HK, Kumano T, Karube K, Kameda T, Takenaka K et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia 2008; 22: 87–95.

    CAS  PubMed  Google Scholar 

  52. Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 2008; 111: 3931–3940.

    CAS  PubMed  Google Scholar 

  53. Xing S, Wanting TH, Zhao W, Ma J, Wang S, Xu X et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood 2008; 111: 5109–5117.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Levine RL, Belisle C, Wadleigh M, Zahrieh D, Lee S, Chagnon P et al. X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis. Blood 2006; 107: 4139–4141.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kralovics R, Teo SS, Li S, Theocharides A, Buser AS, Tichelli A et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 2006; 108: 1377–1380.

    CAS  PubMed  Google Scholar 

  56. Nussenzveig RH, Swierczek SI, Jelinek J, Gaikwad A, Liu E, Verstovsek S et al. Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol 2007; 35: 32–38.

    CAS  PubMed  Google Scholar 

  57. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    CAS  PubMed  Google Scholar 

  58. Passamonti F, Rumi E, Pietra D, Della Porta MG, Boveri E, Pascutto C et al. Relation between JAK2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders. Blood 2006; 107: 3676–3682.

    CAS  PubMed  Google Scholar 

  59. Li S, Kralovics R, De Libero G, Theocharides A, Gisslinger H, Skoda RC . Clonal heterogeneity in polycythemia vera patients with JAK2 exon12 and JAK2-V617F mutations. Blood 2008; 111: 3863–3866.

    CAS  PubMed  Google Scholar 

  60. Bellanne-Chantelot C, Chaumarel I, Labopin M, Bellanger F, Barbu V, De Toma C et al. Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood 2006; 108: 346–352.

    CAS  PubMed  Google Scholar 

  61. Schaub FX, Jager R, Looser R, Hao-Shen H, Hermouet S, Girodon F et al. Clonal analysis of deletions on chromosome 20q and JAK2-V617F in MPD suggests that del20q acts independently and is not one of the pre-disposing mutations for JAK2-V617F. Blood 2009; 113: 2022–2027.

    CAS  PubMed  Google Scholar 

  62. Beer PA, Jones AV, Bench AJ, Goday-Fernandez A, Boyd EM, Vaghela KJ et al. Clonal diversity in the myeloproliferative neoplasms: independent origins of genetically distinct clones. Br J Haematol 2009; 144: 904–908.

    CAS  PubMed  Google Scholar 

  63. Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wand YL et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 2009; 41: 446–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Olcaydu D, Harutyunyan A, Jäger FR, Berg T, Gisslinger B, Pabinger I et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 2009; 41: 450–454.

    CAS  PubMed  Google Scholar 

  65. Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullaly A, Ebert BL et al. K2V617F-positive myeloproliferative neoplasms. Nat Genet 2009; 41: 455–459.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al. Mutations in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.

    PubMed  Google Scholar 

  67. Tefferi A, Pardanani A, Lim KH, Abdel-Wahab O, Laso TL, Patel J et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 2009; 23: 905–911.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tefferi A, Levine RL, Lim KH, Abdel-Wahab O, Lasho TL, Patel J et al. Frequent TET2 mutations in systemic mastocytosis: clinical, KITD816V and FIP1L1-PDGFRA correlates. Leukemia 2009; 23: 900–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tefferi A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Patnaik MM et al. Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia, Prepublished on line. 19 March 2009.

  70. Jankowska AM, Szpurka H, Tiu RV, Makishima H, Afable M, Huh J et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood 2009; 113: 6403–6410.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. James C . The JAK2V617F mutation in polycythemia vera and other myeloproliferative disorders: one mutation for three diseases? Hematology Am Soc Hematol Educ Program 2008; 2008: 69–75.

    Google Scholar 

  72. Esteller M . Epigenetics in cancer. N Engl J Med 2008; 358: 1148–1159.

    CAS  PubMed  Google Scholar 

  73. Fourouclas N, Li J, Gilby DC, Campbell PJ, Beer PA, Boyd EM et al. Methylation of the suppressor of cytokine signaling 3 gene (SOCS3) in myeloproliferative disorders. Haematologica 2008; 93: 1635–1644.

    CAS  PubMed  Google Scholar 

  74. Capello D, Deambrogi C, Rossi D, Lischetti T, Piranda D, Cerri M et al. Epigenetic inactivation of suppressors of cytokine signalling in Philadelphia-negative chronic myeloproliferative disorders. Br J Haematol 2008; 141: 504–511.

    CAS  PubMed  Google Scholar 

  75. Shi J, Zhao Y, Ishii T, Hu W, Sozer S, Zhang W et al. Effects of chromatin-modifying agents on CD34+ cells from patients with idiopathic myelofibrosis. Cancer Res 2007; 67: 6417–6424.

    CAS  PubMed  Google Scholar 

  76. Bogani C, Ponziani V, Guglielmelli P, Desterke C, Rosti V, Bosi A et al. Hypermethylation of CXCR4 promoter in CD34+ cells from patients with primary myelofibrosis. Stem Cells 2008; 26: 1920–1930.

    CAS  PubMed  Google Scholar 

  77. Wang X, Zhang W, Ishii T, Sozer S, Wang J, Xu M et al. Correction of the abnormal trafficking of primary myelofibrosis CD34+ cells by treatment with chromatin modifying agents. Blood 2008; 112: 101A.

    Google Scholar 

  78. Shi S, Calhoun HC, Xia F, Li J, Le L, Li WX . JAK signaling globally counteracts heterochromatic gene silencing. Nat Genet 2006; 38: 1071–1076.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mesa RA, Verstovsek S, Rivera C, Pardanani A, Hussein K, Lasho T et al. 5-Azacitidine has limited therapeutic activity in myelofibrosis. Leukemia 2008; 23: 180–182.

    PubMed  PubMed Central  Google Scholar 

  80. Quintas-Cardama A, Tong W, Kantarjian H, Thomas D, Ravandi F, Kornblau S et al. A phase II study of 5-azacitidine for patients with primary and post-essential thrombocythemia/polycythemia vera myelofibrosis. Leukemia 2008; 22: 965–970.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Odenike OM, Godwin JE, Van Besien K, Huo D, Sher D, Burke P et al. Phase II trial of low dose subcutaneous decitabine in myelofibrosis. Blood 2008; 112: 2809A.

    Google Scholar 

  82. Rambaldi A, Dellacasa CM, Salmoiraghi S, Spinelli O, Ferrari ML, Gattoni E et al. A Phase 2A study of the histone-deacetylase inhibitor ITF2357 in patients with Jak2V617F positive chronic myeloproliferative neoplasms. Blood 2008; 112: 100A.

    Google Scholar 

  83. Guerini V, Barbui V, Spinelli O, Salvi A, Dellacasa C, Carobbio A et al. The histone deacetylase inhibitor ITF2357 selectively targets cells bearing mutated JAK2(V617F). Leukemia 2008; 22: 740–747.

    CAS  PubMed  Google Scholar 

  84. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    CAS  PubMed  Google Scholar 

  85. Guglielmelli P, Tozzi L, Pancrazzi A, Bogani C, Antonioli E, Ponziani V et al. MicroRNA expression profile in granulocytes from primary myelofibrosis patients. Exp Hematol 2007; 35: 1708–1718.

    CAS  PubMed  Google Scholar 

  86. Bruchova H, Merkerova M, Prchal JT . Aberrant expression of microRNA in polycythemia vera. Haematologica 2008; 93: 1009–1016.

    CAS  PubMed  Google Scholar 

  87. Guglielmelli P, Tozzi L, Bogani C, Bartalucci N, Salati S, Manfredini R et al. Dysregulated expression of microRNA-16 contributes to abnormal erythropoiesis in patients with polycythemia vera. Blood 2008; 112: 199A.

    Google Scholar 

  88. Zhao R, Follows GA, Beer PA, Scott LM, Huntly BJ, Green AR et al. Inhibition of the Bcl-xL deamidation pathway in myeloproliferative disorders. N Engl J Med 2008; 359: 2778–2789.

    CAS  PubMed  Google Scholar 

  89. Zeuner A, Pedini F, Francescangeli F, Signore M, Girelli G, Tafuri A et al. Activity of the BH3 mimetic ABT-737 on polycythemia vera erythroid precursor cells. Blood 2009; 113: 1522–1525.

    CAS  PubMed  Google Scholar 

  90. Hookham MB, Elliott J, Suessmuth Y, Staerk J, Ward AC, Vainchenker W et al. The myeloproliferative disorder-associated JAK2 V617F mutant escapes negative regulation by suppressor of cytokine signaling 3. Blood 2007; 109: 4924–4929.

    CAS  PubMed  Google Scholar 

  91. Mesa RA . New insights into the pathogenesis and treatment of chronic myeloproliferative disorders. Curr Opin Hematol 2008; 15: 121–126.

    CAS  PubMed  Google Scholar 

  92. Pardanani A . JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Leukemia 2008; 22: 23–30.

    CAS  PubMed  Google Scholar 

  93. Verstovsek S, Kantarjian HM, Pardanani AD, Thomas D, Cortes J, Mesa RA et al. The JAK inhibitor, INCB018424, demonstrates durable and marked clinical responses in primary myelofibrosis (PMF) and post-polycythemia/essential thrombocythemia myelofibrosis (Post PV/ETMF). Blood 2008; 112: 622 (Abstract 1762).

    Google Scholar 

  94. Pardanani AD, Gotlib J, Jamieson C, Cortes J, Talpaz M, Stone RM et al. A Phase I study of TG101348, an orally bioavailable JAK2-selective inhibitor, in patients with myelofibrosis. Blood 2008; 112: 43 : (Abstract 97).

    Google Scholar 

  95. Shah NP, Olszynski P, Sokol L, Verstovsek S, Hoffman R, List AF et al. A Phase I study of XL019, a selective JAK2 inhibitor, in patients with primary myelofibrosis, post-polycythemia vera, or post-essential thrombocythemia myelofibrosis. Blood 2008; 112: 44 (Abstract 98).

    Google Scholar 

  96. Verstovsek S, Tefferi A, Kornblau S, Thomas D, Cortes J, Ravandi-Kashani F et al. Phase II study of CEP701, an orally available JAK2 inhibitor, in patients with primary myelofibrosis and post polycythemia vera/essential thrombocythemia myelofibrosis. Blood 2007; 110: 1037A (Abstract 3543).

    Google Scholar 

  97. Rambaldi A, Dellacasa CM, Salmoiraghi S, Spinelli O, Ferrari ML, Gattoni E et al. A phase 2A study of the histone-deacetylase Inhibitor ITF2357 in patients with Jak2V617F positive chronic myeloproliferative neoplasms. Blood 2008; 112: 44 (Abstract 100).

    Google Scholar 

  98. Paquette R, Sokol L, Shah NP, Silver RT, List AF, Clary DO et al. A Phase I study of XL019, a selective JAK2 inhibitor, in patients with polycythemia vera. Blood 2008; 112: 971 (Abstract 2810).

    Google Scholar 

  99. Moliterno AR, Roboz GJ, Carroll M, Luger S, Hexner E, Bensen-Kennedy DM . An open-label study of CEP-701 in patients with JAK2 V617F-positive polycythemia vera and essential thrombocytosis. Blood 2008; 12: 44 (Abstract 99).

    Google Scholar 

  100. Kiladjian JJ, Cassinat B, Chevret S, Turlure P, Cambier N, Roussel M et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood 2008; 112: 3065–3072.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This meeting was supported by unrestricted educational grants from Bristol-Myers Squibb, Princeton, New Jersey and Novartis Pharmaceuticals, East Hanover, New Jersey, USA.

This review is based in part on data presented at the Workshop on Philadelphia positive and Philadelphia negative myeloproliferative disorders that took place in Sonoma California on 11 and 12 December 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Goldman.

Additional information

Participants

The following individuals were present at the meeting in Sonoma, California: Ralph Arlinghaus, Houston, USA, Tiziano Barbui, Bergamo, Italy, Olivier Bernard, Paris, France, Raj Chopra, Astra-Zeneca, Liverpool, UK, Connie Eaves, Vancouver, Canada, Oliver Hantschel, Vienna, Austria, Ron Hoffman, New York, USA, Robert Gale, Los Angeles, USA, Alan Gewirtz, Philadelphia, USA, John Goldman, London, UK, Tony Green, Cambridge UK, Rudiger Hehlmann, Mannheim, Germany, Tessa Holyoake, Glasgow, UK, Catriona Jamieson, San Diego USA, Xiaoyan Jiang, Vancouver, Canada, Robert Kralovics, Vienna, Austria, Ross Levine, New York, USA, Paul Manley, Novartis, Ruben Mesa, Scottsdale, USA, Tariq Mughal, London, UK, Alfonso Quintas-Cardama, Houston USA, Heike Pahl, Freiburg, Germany, Danilo Perrotti, Columbus, USA, Giuseppe Saglio, Torino, Italy, Radek Skoda, Basel, Switzerland, Richard Silver, New York, USA, Tomasz Skorski, Philadelphia, USA, Simona Soverini, Bologna, Italy, Ted Szatrowski, Bristol-Myers Squibb, USA, Alessandro Vannucchi, Florence Italy, Rick van Etten, Boston, USA, Richard Woodman, Novartis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldman, J., Green, A., Holyoake, T. et al. Chronic myeloproliferative diseases with and without the Ph chromosome: some unresolved issues. Leukemia 23, 1708–1715 (2009). https://doi.org/10.1038/leu.2009.142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.142

Keywords

This article is cited by

Search

Quick links