Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Vasculogenic mimicry of acute leukemic bone marrow stromal cells

Abstract

Angiogenesis is thought to be involved in the development of acute leukemia (AL). We investigated whether bone marrow stromal cells (BMSCs) derived from stem cells might be responsible for the increase in microvascular density (MVD), and compared 13 bone marrow samples from AL patients with 23 samples from patients in complete remission (controls). We demonstrated that AL-derived BMSC secreted more insulin growth factor-1 (IGF-1) and SDF-1α than controls. In addition, in contrast to normal adherent BMSCs, adherent BMSCs derived from CD133+/CD34+ stem cells from AL patients were able to form capillary-like structures (‘vasculogenic mimicry’) on Matrigel. The increase in vasculogenic mimicry occurred through PI3 kinase and ρ GTPase pathway as inhibitors of these signaling pathways (wortmannin and GGTI-298, respectively) were able to reduce or prevent capillary tube formation. In normal BMSC, addition of exogenous IGF-1 generated capillary-like tubes through the same pathway as observed spontaneously in AL-derived BMSC. The involvement of IGF-1 in the mimicry process was confirmed by the addition of a neutralizing antibody against IGF-1R or a IGF-1R pathway inhibitor (picropodophyllin). In conclusion, AL-derived BMSC present functional abnormalities that may explain the increase in MVD in the bone marrow of AL patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Folkman J . Tumor angiogenesis: a possible control point in tumor growth. Ann Intern Med 1975; 82: 96–100.

    Article  CAS  PubMed  Google Scholar 

  2. Moehler TM, Neben K, Ho AD, Goldschmidt H . Angiogenesis in hematologic malignancies. Ann Hematol 2001; 80: 695–705.

    Article  CAS  PubMed  Google Scholar 

  3. Mangi MH, Newland AC . Angiogenesis and angiogenic mediators in haematological malignancies. Br J Haematol 2000; 111: 43–51.

    Article  CAS  PubMed  Google Scholar 

  4. Matuszewski L, Persigehl T, Wall A, Meier N, Bieker R, Kooijman H et al. Assessment of bone marrow angiogenesis in patients with acute myeloid leukemia by using contrast-enhanced MR imaging with clinically approved iron oxides: initial experience. Radiology 2007; 242: 217–224.

    Article  PubMed  Google Scholar 

  5. Hussong JW, Rodgers GM, Shami PJ . Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000; 95: 309.

    CAS  PubMed  Google Scholar 

  6. Padró T, Ruiz S, Bieker R, Bürger H, Steins M, Kienast J et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 2000; 95: 2637–2644.

    PubMed  Google Scholar 

  7. Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J . Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 1997; 150: 815–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong X, Han ZC, Yang R . Angiogenesis and antiangiogenic therapy in hematologic malignancies. Crit Rev Oncol Hematol 2007; 62: 105–118.

    Article  PubMed  Google Scholar 

  9. Yang R, Han ZC . Angiogenesis in hematologic malignancies and its clinical implications. Int J Hematol 2002; 75: 246–256.

    Article  PubMed  Google Scholar 

  10. De Bont ES, Rosati S, Jacobs S, Kamps WA, Vellenga E . Increased bone marrow vascularization in patients with acute myeloid leukemia: a possible role for vascular endothelial growth factor. Br J Haematol 2001; 113: 296–304.

    Article  CAS  PubMed  Google Scholar 

  11. Aguayo A, Kantarjian HM, Estey EH, Giles FJ, Verstovsek S, Manshouri T et al. Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer 2002; 95: 1923–1930.

    Article  PubMed  Google Scholar 

  12. Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 2000; 106: 511–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Padró T, Bieker R, Ruiz S, Steins M, Retzlaff S, Bürger H et al. Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR (VEGFR-2) in the bone marrow of patients with acute myeloid leukemia. Leukemia 2002; 16: 1302–1310.

    Article  PubMed  Google Scholar 

  14. Fiedler W, Graeven U, Ergün S, Verago S, Kilic N, Stockschläder M et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 1997; 89: 1870–1875.

    CAS  PubMed  Google Scholar 

  15. Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000; 96: 2240–2245.

    CAS  PubMed  Google Scholar 

  16. Schneider P, Vasse M, Sbaa-Ketata E, Lenormand B, Hong L, Soria C et al. The growth of highly proliferative acute lymphoblastic leukemia may be independent of stroma and/or angiogenesis. Leukemia 2001; 15: 1143–1145.

    Article  CAS  PubMed  Google Scholar 

  17. Faderl S, Do KA, Johnson MM, Keating M, O’brien S, Jilani I et al. Angiogenic factors may have a different prognostic role in adult acute lymphoblastic leukemia. Blood 2005; 106: 4303–4307.

    Article  CAS  PubMed  Google Scholar 

  18. Duhrsen U, Knieling G, Beecken W, Neumann S, Hossfeld DK . Chimaeric cultures of human marrow stroma and murine leukemia cells: evidence for abnormalities in the haemopoietic microenvironment in myeloid malignancies and other infiltrating marrow disorders. Br J Haematol 1995; 90: 502–511.

    Article  CAS  PubMed  Google Scholar 

  19. Garrido SM, Appelbaum FR, Willman CL, Banker DE . Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5). Exp Hematol 2001; 29: 448–457.

    Article  CAS  PubMed  Google Scholar 

  20. Manabe A, Coustan-Smith E, Behm FG, Raimondi SC, Campana D . Bone marrow-derived stromal cells prevent apoptotic cell death in B-lineage acute lymphoblastic leukemia. Blood 1992; 79: 2370–2377.

    CAS  PubMed  Google Scholar 

  21. Gilmore MJ, Prentice HG, Blacklock HA, Janossy G, Hoffbrand AV . A technique for rapid isolation of bone marrow mononuclear cells using Ficoll-Metrizoate and the IBM 2991 blood cell processor. Br J Haematol 1982; 50: 619–626.

    Article  CAS  PubMed  Google Scholar 

  22. Mirshahi P, Toprak SK, Faussat AM, Dubrulle S, Marie JP, Soria C et al. Malignant hematopoietic cells induce an increased expression of VEGFR-1 and VEGFR-3 on bone marrow endothelial cells via AKT and mTOR signalling pathways. Biochem Biophys Res Commun 2006; 349: 1003–1010.

    Article  CAS  PubMed  Google Scholar 

  23. Doepfner KT, Spertini O, Arcaro A . Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia 2007; 21: 1921–1930.

    Article  CAS  PubMed  Google Scholar 

  24. Mirshahi F, Pourtau J, Li H, Muraine M, Trochon V, Legrand E et al. SDF-1 activity on microvascular endothelial cells: consequences on angiogenesis in in vitro and in vivo models. Thromb Res 2000; 99: 587–594.

    Article  CAS  PubMed  Google Scholar 

  25. Chen T, Bai H, Shao Y, Arzigian M, Janzen V, Attar E et al. Stromal cell-derived factor-1/CXCR4 signaling modifies the capillary-like organization of human embryonic stem cell-derived endothelium in vitro. Stem Cells 2007; 25: 392–401.

    Article  CAS  PubMed  Google Scholar 

  26. Aghi M, Cohen KS, Klein RJ, Scadden DT, Chiocca EA . Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res 2006; 66: 9054–9064.

    Article  CAS  PubMed  Google Scholar 

  27. Hermann C, Assmus B, Urbich C, Zeiher AM, Dimmeler S . Insulin-mediated stimulation of protein kinase Akt: a potent survival signaling cascade for endothelial cells. Arterioscler Thromb Vasc Biol 2000; 20: 402–409.

    Article  CAS  PubMed  Google Scholar 

  28. Riccioni R, Diverio D, Mariani G, Buffolino S, Riti V, Saulle E et al. Expression of Tie-2 and other receptors for endothelial growth factors in acute myeloid leukemias is associated with monocytic features of leukemic blasts. Stem Cells 2007; 25: 1862–1871.

    Article  CAS  PubMed  Google Scholar 

  29. Cheng HL, Steinway ML, Russell JW, Feldman EL . GTPases and phosphatidylinositol 3-kinase are critical for insulin-like growth factor-I-mediated Schwann cell motility. J Biol Chem 2000; 275: 27197–27204.

    CAS  PubMed  Google Scholar 

  30. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999; 155: 739–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hendrix MJ, Seftor EA, Hess AR, Seftor RE . Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 2003; 3: 411–421.

    Article  CAS  PubMed  Google Scholar 

  32. Sun B, Zhang S, Zhang D, Du J, Guo H, Zhao X et al. Vasculogenic mimicry is associated with high tumor grade, invasion and metastasis, and short survival in patients with hepatocellular carcinoma. Oncol Rep 2006; 16: 693–698.

    CAS  PubMed  Google Scholar 

  33. Folberg R, Hendrix MJ, Maniotis AJ . Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 2000; 156: 361–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scavelli C, Nico B, Cirulli T, Ria R, Di Pietro G, Mangieri D et al. Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene 2008; 27: 663–674.

    Article  CAS  PubMed  Google Scholar 

  35. Zahiragic L, Schliemann C, Bieker R, Thoennissen NH, Burow K, Kramer C et al. Bevacizumab reduces VEGF expression in patients with relapsed and refractory acute myeloid leukemia without clinical antileukemic activity. Leukemia 2007; 21: 1310–1312.

    Article  CAS  PubMed  Google Scholar 

  36. Vincent L, Albanese P, Bompais H, Uzan G, Vannier JP, Steg PG et al. Insights in the molecular mechanisms of the anti-angiogenic effect of an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Thromb Haemost 2003; 89: 530–537.

    Article  CAS  PubMed  Google Scholar 

  37. Pille JY, Li H, Blot E, Bertrand JR, Pritchard LL, Opolon P et al. Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum Gene Ther 2006; 17: 1019–1026.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Mirshahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirshahi, P., Rafii, A., Vincent, L. et al. Vasculogenic mimicry of acute leukemic bone marrow stromal cells. Leukemia 23, 1039–1048 (2009). https://doi.org/10.1038/leu.2009.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.10

Keywords

This article is cited by

Search

Quick links