Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodysplasias

Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS)

Abstract

CD4+CD25+FOXP3+ T regulatory cells (Tregs) prevent autoimmunity by restricting overexuberant immune responses, but the same subpopulation can incur detrimental effects on antitumor responses. In both cases, the suppressor potential of Tregs appears to be strongly influenced by their compartmentalization. In myelodysplastic syndromes (MDS), immune deregulation and autoimmunity in the early stages might lead to ineffective hematopoiesis and bone marrow (BM) failure, whereas late-stage disease is characterized by the immune escape of the malignant clone. We show that these two stages of MDS are associated with differential Treg activity. Specifically, we found that in early stage MDS, compared with normal hematopoiesis and late stage MDS, Tregs are dysfunctional and their BM homing through the CXCL12/CXCR4 axis is seriously impaired as a result of CXCR4 downregulation. Conversely, in late stage MDS, Tregs are systemically and locally expanded and retain their function and migratory capacity. Moreover, Treg levels follow the disease course and are significantly reduced in treatment responding patients. Our findings indicate Treg involvement in the pathophysiology of MDS; defective suppressor function and BM trafficking of Tregs may be important in the autoimmune process of early MDS, but increased Treg activity could favor leukemic clone progression in late stage disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sakaguchi S . Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22: 531–562.

    Article  CAS  PubMed  Google Scholar 

  2. von Boehmer H . Mechanisms of suppression by suppressor T cells. Nat Immunol 2005; 6: 338–344.

    Article  CAS  PubMed  Google Scholar 

  3. Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med 2004; 200: 277–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu AJ, Hua H, Munson SH, McDevitt HO . Tumor necrosis factor-alpha regulation of CD4+CD25+ T cell levels in NOD mice. Proc Natl Acad Sci USA 2002; 99: 12287–12292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kohm AP, Carpentier PA, Anger HA, Miller SD . Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 2002; 169: 4712–4716.

    Article  CAS  PubMed  Google Scholar 

  6. Beyer M, Schultze JL . Regulatory T cells in cancer. Blood 2006; 108: 804–811.

    Article  CAS  PubMed  Google Scholar 

  7. Curiel TJ . Tregs and rethinking cancer immunotherapy. J Clin Invest 2007; 117: 1167–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Valencia X, Yarboro C, Illei G, Lipsky PE . Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol 2007; 178: 2579–2588.

    Article  CAS  PubMed  Google Scholar 

  9. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA . Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 2004; 199: 971–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shimizu J, Yamazaki S, Sakaguchi S . Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 1999; 163: 5211–5218.

    CAS  PubMed  Google Scholar 

  11. Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H . Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 2005; 105: 2862–2868.

    Article  CAS  PubMed  Google Scholar 

  12. Piconese S, Valzasina B, Colombo MP . OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 2008; 205: 825–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei S, Kryczek I, Zou W . Regulatory T-cell compartmentalization and trafficking. Blood 2006; 108: 426–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Szanya V, Ermann J, Taylor C, Holness C, Fathman CG . The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J Immunol 2002; 169: 2461–2465.

    Article  CAS  PubMed  Google Scholar 

  15. Sather BD, Treuting P, Perdue N, Miazgowicz M, Fontenot JD, Rudensky AY et al. Altering the distribution of Foxp3(+) regulatory T cells results in tissue-specific inflammatory disease. J Exp Med 2007; 204: 1335–1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Siegmund K, Feuerer M, Siewert C, Ghani S, Haubold U, Dankof A et al. Migration matters: regulatory T-cell compartmentalization determines suppressive activity in vivo. Blood 2005; 106: 3097–3104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, Mottram P et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res 2004; 64: 8451–8455.

    Article  CAS  PubMed  Google Scholar 

  18. Hellstrom-Lindberg E, Willman C, Barrett AJ, Saunthararajah Y . Achievements in understanding and treatment of myelodysplastic syndromes. Hematology (Am Soc Hematol Educ Program) 2000, 110–132.

    Article  Google Scholar 

  19. Sloand EM, Rezvani K . The role of the immune system in myelodysplasia: implications for therapy. Semin Hematol 2008; 45: 39–48.

    Article  CAS  PubMed  Google Scholar 

  20. Ortega J, List A . Immunomodulatory drugs in the treatment of myelodysplastic syndromes. Curr Opin Oncol 2007; 19: 656–659.

    Article  CAS  PubMed  Google Scholar 

  21. Greenberg PL, Young NS, Gattermann N . Myelodysplastic syndromes. Hematology Am Soc Hematol Educ Program 2002, 136–161.

    Article  Google Scholar 

  22. Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA et al. In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 2006; 107: 3940–3949.

    Article  CAS  PubMed  Google Scholar 

  23. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 2001; 194: 847–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kordasti SY, Ingram W, Hayden J, Darling D, Barber L, Afzali B et al. CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood 2007; 110: 847–850.

    Article  CAS  PubMed  Google Scholar 

  25. Kriegel MA, Lohmann T, Gabler C, Blank N, Kalden JR, Lorenz HM . Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type II. J Exp Med 2004; 199: 1285–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huehn J, Siegmund K, Lehmann JC, Siewert C, Haubold U, Feuerer M et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J Exp Med 2004; 199: 303–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamblin TJ . Immunological abnormalities in myelodysplastic syndromes. Semin Hematol 1996; 33: 150–162.

    CAS  PubMed  Google Scholar 

  28. Yamaguchi T, Sakaguchi S . Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol 2006; 16: 115–123.

    Article  CAS  PubMed  Google Scholar 

  29. Fujii S, Shimizu K, Klimek V, Geller MD, Nimer SD, Dhodapkar MV . Severe and selective deficiency of interferon-gamma-producing invariant natural killer T cells in patients with myelodysplastic syndromes. Br J Haematol 2003; 122: 617–622.

    Article  PubMed  Google Scholar 

  30. Kiladjian JJ, Bourgeois E, Lobe I, Braun T, Visentin G, Bourhis JH et al. Cytolytic function and survival of natural killer cells are severely altered in myelodysplastic syndromes. Leukemia 2006; 20: 463–470.

    Article  CAS  PubMed  Google Scholar 

  31. Epling-Burnette PK, Bai F, Painter JS, Rollison DE, Salih HR, Krusch M et al. Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors. Blood 2007; 109: 4816–4824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kiladjian JJ, Visentin G, Viey E, Chevret S, Eclache V, Stirnemann J et al. Activation of cytotoxic T-cell receptor gammadelta T lymphocytes in response to specific stimulation in myelodysplastic syndromes. Haematologica 2008; 93: 381–389.

    Article  CAS  PubMed  Google Scholar 

  33. Marshall NA, Christie LE, Munro LR, Culligan DJ, Johnston PW, Barker RN et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 2004; 103: 1755–1762.

    Article  CAS  PubMed  Google Scholar 

  34. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 2005; 106: 2018–2025.

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Zheng J, Liu J, Yao J, He Y, Li X et al. Increased population of CD4(+)CD25(high), regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. Eur J Haematol 2005; 75: 468–476.

    Article  PubMed  Google Scholar 

  36. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001; 61: 4766–4772.

    CAS  PubMed  Google Scholar 

  37. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002; 169: 2756–2761.

    Article  CAS  PubMed  Google Scholar 

  38. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F . Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 2005; 65: 2457–2464.

    Article  CAS  PubMed  Google Scholar 

  39. Wang HY, Lee DA, Peng G, Guo Z, Li Y, Kiniwa Y et al. Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity 2004; 20: 107–118.

    Article  CAS  PubMed  Google Scholar 

  40. Nishikawa H, Jager E, Ritter G, Old LJ, Gnjatic S . CD4+ CD25+ regulatory T cells control the induction of antigen-specific CD4+ helper T cell responses in cancer patients. Blood 2005; 106: 1008–1011.

    Article  CAS  PubMed  Google Scholar 

  41. Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE . TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 2006; 108: 253–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fritzsching B, Oberle N, Pauly E, Geffers R, Buer J, Poschl J et al. Naive regulatory T cells: a novel subpopulation defined by resistance toward CD95L-mediated cell death. Blood 2006; 108: 3371–3378.

    Article  CAS  PubMed  Google Scholar 

  43. Gersuk GM, Beckham C, Loken MR, Kiener P, Anderson JE, Farrand A et al. A role for tumour necrosis factor-alpha, Fas and Fas-Ligand in marrow failure associated with myelodysplastic syndrome. Br J Haematol 1998; 103: 176–188.

    Article  CAS  PubMed  Google Scholar 

  44. Bruhl H, Cihak J, Schneider MA, Plachy J, Rupp T, Wenzel I et al. Dual role of CCR2 during initiation and progression of collagen-induced arthritis: evidence for regulatory activity of CCR2+ T cells. J Immunol 2004; 172: 890–898.

    Article  PubMed  Google Scholar 

  45. Schwarz A, Maeda A, Wild MK, Kernebeck K, Gross N, Aragane Y et al. Ultraviolet radiation-induced regulatory T cells not only inhibit the induction but can suppress the effector phase of contact hypersensitivity. J Immunol 2004; 172: 1036–1043.

    Article  CAS  PubMed  Google Scholar 

  46. Fritsch RD, Shen X, Illei GG, Yarboro CH, Prussin C, Hathcock KS et al. Abnormal differentiation of memory T cells in systemic lupus erythematosus. Arthritis Rheum 2006; 54: 2184–2197.

    Article  CAS  PubMed  Google Scholar 

  47. Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR . The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci USA 1997; 94: 1925–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Solomou EE, Rezvani K, Mielke S, Malide D, Keyvanfar K, Visconte V et al. Deficient CD4+ CD25+ FOXP3+ T regulatory cells in acquired aplastic anemia. Blood 2007; 110: 1603–1606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van der Vliet HJ, Koon HB, Atkins MB, Balk SP, Exley MA . Exploiting regulatory T-cell populations for the immunotherapy of cancer. J Immunother 2007; 30: 591–595.

    Article  PubMed  Google Scholar 

  50. Roncarolo MG, Battaglia M . Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat Rev Immunol 2007; 7: 585–598.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Stavroula Zisakis for skillful technical assistance with flow cytometry. This research was supported in part by educational grants from Janssen-Cilag and Genesis Pharma Hellas to IK and GB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Kotsianidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotsianidis, I., Bouchliou, I., Nakou, E. et al. Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia 23, 510–518 (2009). https://doi.org/10.1038/leu.2008.333

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.333

Keywords

This article is cited by

Search

Quick links