Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

State-of-the-Art

End-tidal carbon monoxide and hemolysis

Abstract

Hemolytic disease in newborns can result from a number of conditions, which can place such infants at an increased risk for the development of severe hyperbilirubinemia. Because the catabolism of heme produces equimolar amounts of carbon monoxide (CO) and bilirubin, measurements of end-tidal breath CO (corrected for ambient CO) or ETCOc can serve as an index of hemolysis as well as of bilirubin production from any cause. Elevated levels of ETCOc have been correlated with blood carboxyhemoglobin levels and thus hemolysis. However, the detection of hemolysis can be a clinically challenging problem in newborns. Here, we describe the importance of determining ETCOc levels and their application in identifying infants at risk for developing hyperbilirubinemia associated with hemolysis and other causes of increased bilirubin production.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Slusher TM, Zipursky A, Bhutani VK . A global need for affordable neonatal jaundice technologies. Semin Perinatol 2011; 35: 185–191.

    Article  Google Scholar 

  2. Bhutani VK, Johnson L . A proposal to prevent severe neonatal hyperbilirubinemia and kernicterus. J Perinatol 2009; 29 (Suppl 1): S61–S67.

    Article  Google Scholar 

  3. Shapiro SM . Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J Perinatol 2005; 25: 54–59.

    Article  CAS  Google Scholar 

  4. Shapiro SM, Bhutani VK, Johnson L . Hyperbilirubinemia and kernicterus. Clin Perinatol 2006; 33: 387–410.

    Article  Google Scholar 

  5. Shapiro SM, Nakamura H . Bilirubin and the auditory system. J Perinatol 2001; 21 (Suppl 1): S52–S55.

    Article  Google Scholar 

  6. Newman TB, Liljestrand P, Jeremy RJ, Ferriero DM, Wu YW, Hudes ES et al. Outcomes among newborns with total serum bilirubin levels of 25 mg per deciliter or more. N Engl J Med 2006; 354: 1889–1900.

    Article  CAS  Google Scholar 

  7. Kuzniewicz M, Newman TB . Interaction of hemolysis and hyperbilirubinemia on neurodevelopmental outcomes in the collaborative perinatal project. Pediatrics 2009; 123: 1045–1050.

    Article  Google Scholar 

  8. American Academy of Pediatrics. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 2004; 114: 297–316.

    Article  Google Scholar 

  9. Ahlfors CE, Wennberg RP . Bilirubin-albumin binding and neonatal jaundice. Semin Perinatol 2004; 28: 334–339.

    Article  Google Scholar 

  10. Brito MA, Rosa AI, Falcao AS, Fernandes A, Silva RF, Butterfield DA et al. Unconjugated bilirubin differentially affects the redox status of neuronal and astroglial cells. Neurobiol Dis 2008; 29: 30–40.

    Article  CAS  Google Scholar 

  11. Cesaratto L, Calligaris SD, Vascotto C, Deganuto M, Bellarosa C, Quadrifoglio F et al. Bilirubin-induced cell toxicity involves PTEN activation through an APE1/Ref-1-dependent pathway. J Mol Med (Berl) 2007; 85: 1099–1112.

    Article  CAS  Google Scholar 

  12. Ikonomidou C, Kaindl AM . Neuronal death and oxidative stress in the developing brain. Antioxid Redox Signal 2011; 14: 1535–1550.

    Article  CAS  Google Scholar 

  13. Nielsen MJ, Petersen SV, Jacobsen C, Oxvig C, Rees D, Moller HJ et al. Haptoglobin-related protein is a high-affinity hemoglobin-binding plasma protein. Blood 2006; 108: 2846–2849.

    Article  CAS  Google Scholar 

  14. Rother RP, Bell L, Hillmen P, Gladwin MT . The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 2005; 293: 1653–1662.

    Article  CAS  Google Scholar 

  15. Exner M, Minar E, Wagner O, Schillinger M . The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Rad Biol Med 2004; 37: 1097–1104.

    Article  CAS  Google Scholar 

  16. Maisels MJ, Gifford K, Antle CE, Leib GR . Jaundice in the healthy newborn infant: a new approach to an old problem. Pediatrics 1988; 81: 505–511.

    CAS  Google Scholar 

  17. Newman TB, Easterling MJ . Yield of reticulocyte counts and blood smears in term infants. Clin Pediatr 1994; 33: 71–76.

    Article  CAS  Google Scholar 

  18. Berk PD, Rodkey FL, Blaschke TF, Collison HA, Waggoner JG . Comparison of plasma bilirubin turnover and carbon monoxide production in man. J Lab Clin Med 1974; 83: 29–37.

    CAS  PubMed  Google Scholar 

  19. Sjostrand T . A practical method for estimating carboxyhaemoglobin by alveolar air analysis. Overseas Postgrad Med J 1948; 2: 485–487.

    CAS  PubMed  Google Scholar 

  20. Sjostrand T . Endogenous formation of carbon monoxide in man. Nature 1949; 164: 580.

    Article  CAS  Google Scholar 

  21. Vreman HJ, Knauer Y, Wong RJ, Chan ML, Stevenson DK . Dermal carbon monoxide excretion in neonatal rats during light exposure. Pediatr Res 2009; 66: 66–69.

    Article  CAS  Google Scholar 

  22. Vreman HJ, Wong RJ, Sanesi CA, Dennery PA, Stevenson DK . Simultaneous production of carbon monoxide and thiobarbituric acid reactive substances in rat tissue preparations by an iron-ascorbate system. Can J Physiol Pharmacol 1998; 76: 1057–1065.

    Article  CAS  Google Scholar 

  23. Vreman HJ, Mahoney JJ, Stevenson DK . Carbon monoxide and carboxyhemoglobin. Adv Pediatr 1995; 42: 303–334.

    CAS  Google Scholar 

  24. Vreman HJ, Stevenson DK, Oh W, Fanaroff AA, Wright LL, Lemons JA et al. Semiportable electrochemical instrument for determining carbon monoxide in breath. Clin Chem 1994; 40: 1927–1933.

    CAS  PubMed  Google Scholar 

  25. Stevenson DK, Vreman HJ, Oh W, Fanaroff AA, Wright LL, Lemons JA et al. Bilirubin production in healthy term infants as measured by carbon monoxide in breath. Clin Chem 1994; 40: 1934–1939.

    CAS  Google Scholar 

  26. Vreman HJ, Baxter LM, Stone RT, Stevenson DK . Evaluation of a fully automated end-tidal carbon monoxide instrument for breath analysis. Clin Chem 1996; 42: 50–56.

    CAS  PubMed  Google Scholar 

  27. Vreman HJ, Wong RJ, Harmatz P, Fanaroff AA, Berman B, Stevenson DK . Validation of the Natus CO-Stat End Tidal Breath Analyzer in children and adults. J Clin Monit Comput 1999; 15: 421–427.

    Article  CAS  Google Scholar 

  28. Vreman HJ, Mahoney JJ, Van Kessel AL, Stevenson DK . Carboxyhemoglobin as measured by gas chromatography and with the IL 282 and 482 CO-Oximeters. Clin Chem 1988; 34: 2562–2566.

    CAS  PubMed  Google Scholar 

  29. Javier MC, Krauss A, Nesin M . Corrected end-tidal carbon monoxide closely correlates with the corrected reticulocyte count in coombs' test-positive term neonates. Pediatrics 2003; 112: 1333–1337.

    Article  Google Scholar 

  30. Stevenson DK, Fanaroff AA, Maisels MJ, Young BW, Wong RJ, Vreman HJ et al. Prediction of hyperbilirubinemia in near-term and term infants. Pediatrics 2001; 108: 31–39.

    Article  CAS  Google Scholar 

  31. Herschel M, Karrison T, Wen M, Caldarelli L, Baron B . Evaluation of the direct antiglobulin (Coombs') test for identifying newborns at risk for hemolysis as determined by end-tidal carbon monoxide concentration (ETCOc); and comparison of the Coombs' test with ETCOc for detecting significant jaundice. J Perinatol 2002; 22: 341–347.

    Article  Google Scholar 

  32. Barak M, Oron T, Mimouni FB, Dollberg S, Littner Y . Effect of hematocrit on exhaled carbon monoxide in healthy newborn infants. J Perinatol 2005; 25: 784–787.

    Article  CAS  Google Scholar 

  33. Herschel M, Ryan M, Gelbart T, Kaplan M . Hemolysis and hyperbilirubinemia in an African American neonate heterozygous for glucose-6-phosphate dehydrogenase deficiency. J Perinatol 2002; 22: 577–579.

    Article  Google Scholar 

  34. Kaplan M, Herschel M, Hammerman C, Hoyer JD, Stevenson DK . Hyperbilirubinemia among African American, glucose-6-phosphate dehydrogenase-deficient neonates. Pediatrics 2004; 114: e213–e219.

    Article  Google Scholar 

  35. Kaplan M, Herschel M, Hammerman C, Karrison T, Hoyer JD, Stevenson DK . Studies in hemolysis in glucose-6-phosphate dehydrogenase-deficient African American neonates. Clin Chim Acta 2006; 365: 177–182.

    Article  CAS  Google Scholar 

  36. Sylvester KP, Patey RA, Rafferty GF, Rees D, Thein SL, Greenough A . Exhaled carbon monoxide levels in children with sickle cell disease. Eur J Pediatr 2005; 164: 162–165.

    Article  CAS  Google Scholar 

  37. James EB, Vreman HJ, Wong RJ, Stevenson DK, Vichinsky E, Schumacher L et al. Elevated exhaled carbon monoxide concentration in hemoglobinopathies and its relation to red blood cell transfusion therapy. Pediatr Hematol Oncol 2010; 27: 112–121.

    Article  CAS  Google Scholar 

  38. Blok CA, Krediet TG, Kavelaars A, Koopman-Esseboom C, Vreman HJ, Van Bel F . Early end-tidal carbon monoxide levels and neurodevelopmental outcome at 3 years 6 months of age in preterm infants. Dev Med Child Neurol 2011; 53: 1113–1118.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D K Stevenson.

Ethics declarations

Competing interests

GFT has a financial interest in the technology behind a device that Capnia Inc. (Palo Alto, CA) is developing. DKS and RJW are unpaid consultants to Capnia Inc. and have no conflict of interest or financial disclosures to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tidmarsh, G., Wong, R. & Stevenson, D. End-tidal carbon monoxide and hemolysis. J Perinatol 34, 577–581 (2014). https://doi.org/10.1038/jp.2014.66

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2014.66

This article is cited by

Search

Quick links