Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

Clinical implication of lung fluid balance in the perinatal period

Abstract

At birth, lung fluid produced during fetal life must be cleared immediately and efficiently before the first breath takes place, in order for infants to achieve a normal and successful transition from prenatal to postnatal life. Postnatal lung fluid resorption is mediated through activation of airway epithelial sodium channels (ENaC). The observation that ENaC expression is a gestational age-dependent process contributes to our understanding of the development of respiratory distress in both term and preterm infants due to impaired clearing of fluid from their lungs. As fluid absorption, mediated by ENaC activity, in postnatal life has a significant biological role in preventing respiratory distress, any strategy that enhances ENaC activity can potentially help to decrease its incidence and associated morbidity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Jost PA, Policard A . Contribution experimentale a L’etude du developpement prenatal du poumon chez le lapin. Arch Anat Microsc Morphol Exp 1948; 37: 323–332.

    Google Scholar 

  2. Adams FH, Moss AJ, Fagan L . The tracheal fluid in the fetal lamb. Biol Neonate 1963; 5: 151–158.

    Article  CAS  Google Scholar 

  3. Adamson TM, Boyd RDH, Platt HS, Strang LB . Composition of alveolar liquid in the foetal lamb. J Physiol (Lond) 1969; 204: 159–168.

    Article  CAS  Google Scholar 

  4. Olver RE, Strang LB . Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the fetal lamb. J Physiol (Lond) 1974; 241: 327–357.

    Article  CAS  Google Scholar 

  5. Moessinger AC, Collins MH, Blanc WA, Rey HR, James LS . Oligohydramnios-induced lung hypoplasia: the influence of timing and duration in gestation. Pediatr Res 1986; 20 (10): 951–954.

    Article  CAS  Google Scholar 

  6. Wallen LD, Perry SF, Alson JT, Maloney JE . Morphometric study of the role of pulmonary arterial flow in fetal lung growth in sheep. Pediatr Res 1990; 27: 122–127.

    Article  CAS  Google Scholar 

  7. Wallen LD, Perry SF, Alston JT, Maloney JE . Fetal lung growth. Influence of pulmonary arterial flow and surgery in sheep. Am J Respir Crit Care Med 1994; 149 (4 Part 1): 1005–1011.

    Article  CAS  Google Scholar 

  8. Dickson KA, Maloney JE, Berger PJ . Decline in lung liquid volume before labor in fetal lambs. J Appl Physiol 1986; 61: 2266–2272.

    Article  CAS  Google Scholar 

  9. Alcorn D, Adamson TM, Lambert TF, Maloney JE, Ritchie BC, Robinson PM . Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lung. J Anat 1977; 123: 649–660.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Moessinger AC, Harding R, Adamson TM, Singh M, Kiu GT . Role of lung fluid volume in growth and maturation of the fetal sheep lung. J Clin Invest 1990; 86: 1270–1277.

    Article  CAS  Google Scholar 

  11. Wigglesworth JS, Desai R, Hislop A . Fetal lung growth in congenital laryngeal atresia. Pediatr Pathol 1987; 7: 515–525.

    Article  CAS  Google Scholar 

  12. Olver RE, Walters DV, Wilson SM . Developmental regulation of lung liquid transport. Annu Rev Physiol 2004; 66: 77–101.

    Article  CAS  Google Scholar 

  13. Adams FH . Functional development of the fetal lung. J Pediatr 1966; 68 (5): 794–801.

    Article  CAS  Google Scholar 

  14. Elias N, Rafii B, Rahman M, Otulakowski G, Cutz E, O’Brodovich H . The role of alpha-, beta-, and gamma-ENaC subunits in distal lung epithelial fluid absorption induced by pulmonary edema fluid. Am J Physiol Lung Cell Mol Physiol 2007; 293 (3): L537–L545.

    Article  CAS  Google Scholar 

  15. Bland RD, Bressack MA, McMillan DD . Labor decreases the lung water content of newborn rabbits. Am J Obstet Gynecol 1979; 135: 364–367.

    Article  CAS  Google Scholar 

  16. Bland RD . Dynamics of pulmonary water before and after birth. Acta Paediatr Scand Suppl 1983; 305: 12–20.

    Article  CAS  Google Scholar 

  17. Aherne W, Dawkins MJ . The removal of fluid from the pulmonary airways after birth in the rabbit, and the effect of this on prematurity and pre-natal hypoxia. Biol Neonat 1964; 7: 214–229.

    Article  CAS  Google Scholar 

  18. Adams FH, Yanagisawa M, Kuzela D, Martinek H . The disappearance of fetal lung fluid following birth. J Pediatr 1971; 78 (5): 837–843.

    Article  CAS  Google Scholar 

  19. Walters DV, Olver RE . The role of catecholamines in lung liquid absorption at birth. Pediatr Res 1978; 12: 239–242.

    Article  CAS  Google Scholar 

  20. Lawson EE, Brown ER, Torday JS, Madansky DL, Taeusch HW . The effect of epinephrine on tracheal fluid flow and surfactant efflux in fetal sheep. Am Rev Respir Dis 1978; 118: 1023–1026.

    CAS  PubMed  Google Scholar 

  21. Chapman DL, Carlton DP, Nielson DW, Cummings JJ, Poulain FR, Bland RD . Changes in lung lipid during spontaneous labor in fetal sheep. J Appl Physiol 1994; 76 (2): 523–530.

    Article  CAS  Google Scholar 

  22. Olver RE, Ramsden CA, Strang LB, Walters DV . The role of amiloride-blockade sodium transport in adrenaline-induced lung liquid reabsorption in the fetal lamb. J Physiol (Lond) 1986; 376: 321–340.

    Article  CAS  Google Scholar 

  23. Brown MJ, Olver RE, Ramsden CA, Strang LB, Walters DV . Effects of adrenaline and of spontaneous labour on the secretion and absorption of lung liquid in the fetal lamb. J Physiol (Lond) 1983; 344: 137–152.

    Article  CAS  Google Scholar 

  24. Pitkanen O, Tanswell AK, Downey G, O’Brodovich H . Increased Po2 alters the bioelectric properties of fetal distal lung epithelium. Am J Physiol 1996; 270 (6 Part 1): L1060–L1066.

    CAS  PubMed  Google Scholar 

  25. Barker P, Gatzy JT . Effect of gas composition on liquid secretion by explants of distal lung of fetal rat in submersion culture. Am J Physiol 1993; 265: L512–L517.

    CAS  PubMed  Google Scholar 

  26. O’Brodovich H, Hannam V, Seear M, Mullen JBM . Amiloride impairs lung water clearance in newborn guinea pigs. J Appl Physiol 1990; 68 (4): 1758–1762.

    Article  Google Scholar 

  27. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 1994; 367: 463–467.

    Article  CAS  Google Scholar 

  28. Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, Schmidt A et al. Early death due to defective neonatal lung liquid clearance in αENaC-deficient mice. Nat Genet 1996; 12 (3): 325–328.

    Article  CAS  Google Scholar 

  29. Tchepichev S, Ueda J, Canessa CM, Rossier BC, O’Brodovich H . Lung epithelial Na channel subunits are differentially regulated during development and by steroids. Am J Physiol 1995; 269: C805–C812.

    Article  CAS  Google Scholar 

  30. Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalemic acidosis, pseudohypoaldosteronism type I. Nat Genet 1996; 12: 248–253.

    Article  CAS  Google Scholar 

  31. Kerem E, Bistritzer T, Hanukoglu A, Hofmann T, Zhou ZQ, Bennett W et al. Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism. N Engl J Med 1999; 341 (3): 156–162.

    Article  CAS  Google Scholar 

  32. Rossier B . The epithelial sodium channel. Proc Am Thorac Soc 2004; 1: 4–9.

    Article  CAS  Google Scholar 

  33. Mall M, Grubb B, Harkema JR, O’Neal WK, Boucher R . Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nature (Medicine) 2004; 10: 487–493.

    CAS  Google Scholar 

  34. O’Brodovich H, Yang P, Gandhi S, Otulakowski G . Amiloride-insensitive Na+ and fluid absorption in the mammalian distal lung. Am J Physiol Lung Cell Mol Physiol 2008; 294 (3): L401–L408.

    Article  Google Scholar 

  35. Matthay MA, Folkesson HG, Clerici C . Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002; 82 (3): 569–600.

    Article  CAS  Google Scholar 

  36. Firsov D, Gautschi I, Merillat A-M, Rossier BC, Schild L . The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J 1998; 17 (2): 344–352.

    Article  CAS  Google Scholar 

  37. Synder PM, Cheng C, Prince LS, Rogers JC, Welsh MJ . Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J Biol Chem 1998; 273: 681–684.

    Article  Google Scholar 

  38. Eskandari Synder PM, Kreman M, Zampighi GA, Welsh MJ, Wright EM . Number of subunits comprising the epithelial sodium channel. J Biol Chem 1999; 274: 27281–27286.

    Article  Google Scholar 

  39. Gowen CW, Lawson EE, Gingras J, Boucher R, Gatzy JT, Knowles M . Electrical potential difference and ion transport across nasal epithelium of term neonates: correlation with mode of delivery, transient tachypnea of the newborn, and respiratory rate. J Pediatr 1988; 113: 121–127.

    Article  Google Scholar 

  40. Barker PM, Gowen CW, Lawson EE, Knowles MR . Decreased sodium ion absorption across nasal epithelium of very premature infants with respiratory distress syndrome. J Pediatr 1997; 130: 373–377.

    Article  CAS  Google Scholar 

  41. Helve O, Pitkänen O, Andersson S, O’Brodovich H, Kirjavainen T, Otulakowski G . Low expression of human epithelial Na+ channel (hENaC) in airway epithelium of preterm infants with respiratory distress. Pediatrics 2004; 113 (5): 1267–1272.

    Article  Google Scholar 

  42. Helve O, Janer C, Pitkanen O, Andersson S . Expression of the epithelial sodium channel in airway epithelium of newborn infants depends on gestational age. Pediatrics 2007; 120 (6): 1311–1316.

    Article  Google Scholar 

  43. Helve O, Andersson S, Kirjavainen T, Pitkanen OM . Improvement of lung compliance during postnatal adaptation correlates with airway sodium transport. Am J Respir Crit Care Med 2006; 173 (4): 448–452.

    Article  Google Scholar 

  44. Guglani L, Lakshminrusimha S, Ryan RM . Transient tachypnea of the newborn. Pediatr Rev 2008; 29 (11): e59–e65.

    Article  Google Scholar 

  45. Jain L, Dudell GG . Respiratory transition in infants delivered by cesarean section. Semin Perinatol 2006; 30 (5): 296–304.

    Article  Google Scholar 

  46. O’Brodovich H . Immature epithelial Na+ channel expression is one of the pathogenic mechanisms leading to human neonatal respiratory distress syndrome. Proc Assoc Am Physicians 1996; 108 (5): 345–355.

    PubMed  Google Scholar 

  47. Kasap B, Duman N, Ozer E, Tatli M, Kumral A, Ozkan H . Transient tachypnea of the newborn: predictive factor for prolonged tachypnea. Pediatr Int 2008; 50 (1): 81–84.

    Article  Google Scholar 

  48. Copetti R, Cattarossi L . The ‘double lung point’: an ultrasound sign diagnostic of transient tachypnea of the newborn. Neonatology 2007; 91 (3): 203–209.

    Article  Google Scholar 

  49. Aslan E, Tutdibi E, Martens S, Han Y, Monz D, Gortner L . Transient tachypnea of the newborn (TTN): a role for polymorphisms in the beta-adrenergic receptor (ADRB) encoding genes? Acta Paediatr 2008; 97 (10): 1346–1350.

    Article  CAS  Google Scholar 

  50. Kemp PJ, Kim KJ . Spectrum of ion channels in alveolar epithelial cells: implications for alveolar fluid balance. Am J Physiol Lung Cell Mol Physiol 2004; 287 (3): L460–L464.

    Article  CAS  Google Scholar 

  51. Faxelius G, Hagnevik K, Lagercrantz H, Lundell B, Irestedt L . Catecholamine surge and lung function after delivery. Arch Dis Child 1983; 58 (4): 262–266.

    Article  CAS  Google Scholar 

  52. Jain L, Eaton DC . Physiology of fetal lung fluid clearance and the effect of labor. Semin Perinatol 2006; 30 (1): 34–43.

    Article  Google Scholar 

  53. Roberts D, Dalziel S . Antenatal corticosteroids for accelerating fetal lung maturation for women at risk pf preterm birth. Cochrane Database Sydt Rev 2006; 3: CD004454.

    Google Scholar 

  54. Guinn DA, Atkinson MA, Sullivan L, Lee M, MacGregor S, Parilla BV et al. Single vs weekly courses of antenatal corticosteroids for women at risk of preterm delivery: a randomized controlled trial. JAMA 2001; 286: 1581–1587.

    Article  CAS  Google Scholar 

  55. Crowther CA, Haslam RR, Hiller JE, Doyle LW, Robinson JS . Neonatal respiratory distress syndrome after repeat exposure to antenatal corticosteroids: a randomized controlled trial. Lancet 2006; 367: 1913–1919.

    Article  CAS  Google Scholar 

  56. Liggins GC, Howie RN . A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972; 50: 515–525.

    CAS  PubMed  Google Scholar 

  57. Chow YH, Wang Y, Plumb J, O’Brodovich H, Hu J . Hormonal regulation and genomic organization of the hu,an amiloride-sensitive epithelial sodium channel α-subunit gene. Pediatr Res 1999; 46: 208–214.

    Article  CAS  Google Scholar 

  58. Sayegh R, Auerbach SD, Li X, Loftus RW, Husted RF, Stokes JB et al. Glucocorticoid induction of epithelial sodium channel expression in lung and renal epithelia occurs via trans-activation of a hormone response element in the 5′-flanking region of the human epithelial sodium channel α-subunit gene. J Biol Chem 1999; 274: 12431–12437.

    Article  CAS  Google Scholar 

  59. Venkatesh VC, Katzberg HD . Glucocorticoid regulation of epithelial sodium channel genes in human fetal lung. Am J Physiol 1997; 273: L227–L233.

    CAS  PubMed  Google Scholar 

  60. Itani OA, Auerbach SD, Husted RF, Volk KA, Ageloff S, Knepper MA et al. Glucocorticoid-stimulated lung epithelial Na + transport is associated with regulated ENaC and SGK1 expression. Am J Physiol 2002; 282: L631–L641.

    CAS  Google Scholar 

  61. Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA et al. Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na + channel cell surface expression. EMBO J 2001; 20: 7052–7059.

    Article  CAS  Google Scholar 

  62. Snyder PM, Olson DR, Thomas BC . Serum and glucocorticoid-regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na + channel. J Biol Chem 2002; 277: 5–8.

    Article  CAS  Google Scholar 

  63. Jobe AH, Ikegami M, Padbury J, Polk DH, Korirnilli A, Gonzales LW et al. Combined effects of fetal beta agonist stimulation and glucocorticoids on lung function of preterm lambs. Biol Neonate 1997; 72 (5): 305–313.

    Article  CAS  Google Scholar 

  64. Stutchfield P, Whitaker R, Russell I . Antenatal betamethasone and incidence of neonatal respiratory distress after elective caesarean section: pragmatic randomised trial. Br Med J 2005; 331 (7518): 662.

    Article  Google Scholar 

  65. Wright LL, Horbar JD, Gunkel H, Verter J, Younes N, Andrews EB et al. Evidence from multicenter networks on the current use and effectiveness of antenatal corticosteroids in low birth weight infants. Am J Obstet Gynecol 1995; 173 (1): 263–269.

    Article  CAS  Google Scholar 

  66. Noda M, Suzuki S, Tsubochi H, Sugita M, Maeda S, Kobayashi S et al. Single dexamethasone injection increases alveolar fluid clearance in adult rats. Crit Care Med 2003; 31 (4): 1288–1289.

    Article  Google Scholar 

  67. Riskin A, Bend-Weinger M, Riskin-Mashiah S, Kugelman A, Bader D . Cesarean section, gestational age, and transient tachypnea of the newborn: timing is the key. Am J Perinatol 2005; 22 (7): 377–382.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Elias.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, C., Bentur, L. & Elias, N. Clinical implication of lung fluid balance in the perinatal period. J Perinatol 31, 230–235 (2011). https://doi.org/10.1038/jp.2010.134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2010.134

Keywords

This article is cited by

Search

Quick links