Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Urinary trace element concentrations in environmental settings: is there a value for systematic creatinine adjustment or do we introduce a bias?

Abstract

Systematic creatinine adjustment of urinary concentrations of biomarkers has been a challenge over the past years because the assumption of a constant creatinine excretion rate appears erroneous and the issue of overadjustment has recently emerged. This study aimed at determining whether systematic creatinine adjustment is to be recommended for urinary concentrations of trace elements (TEs) in environmental settings. Paired 24-h collection and random spot urine samples (spotU) were obtained from 39 volunteers not occupationally exposed to TEs. Four models to express TEs concentration in spotU were tested to predict the 24-h excretion rate of these TEs (TEμg/24h) considered as the gold standard reference: absolute concentration (TEμg/l); ratio to creatinine (TEμg/gcr); TEμg/gcr adjusted to creatinine (TEμg/gcr-adj); and concentration adjusted to specific gravity (TEμg/l-SG). As, Ba, Cd, Co, Cr, Cu, Hg, Li, Mo, Ni, Pb, Sn, Sb, Se, Te, V and Zn were analyzed by inductively coupled argon plasma mass spectrometry. There was no single pattern of relationship between urinary TEs concentrations in spotU and TEμg/24h. TEμg/l predicted TEμg/24h with an explained variance ranging from 0 to 60%. Creatinine adjustment improved the explained variance by an additional 5 to ~60% for many TEs, but with a risk of overadjustment for the most of them. This issue could be addressed by adjusting TE concentrations on the basis of the regression coefficient of the relationship between TEμg/gcr and creatinine concentration. SG adjustment was as suitable as creatinine adjustment to predict TEμg/24h with no SG-overadjustment (except V). Regarding Cd, Cr, Cu, Ni and Te, none of the models were found to reflect TEμg/24h. In the context of environmental exposure, systematic creatinine adjustment is not recommended for urinary concentrations of TEs. SG adjustment appears to be a more reliable alternative. For some TEs, however, neither methods appear suitable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Boeniger MF, Lowry LK, Rosenberg J . Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review. Am Ind Hyg Assoc J 1993; 54: 615–627.

    Article  CAS  PubMed  Google Scholar 

  2. German Federal Environment Agency. Opinion of the human biomonitoring commission. Standardisation of substance concentrations in urine—creatinine. Bundesgesundheitsbl – Gesundheitsforsch – Gesundheitsschutz 2005; 48: 616–618.

    Article  Google Scholar 

  3. Ryan D, Robards K, Prenzler PD, Kendall M . Recent and potential developments in the analysis of urine: a review. Anal Chim Acta 2011; 684: 8–20.

    Article  CAS  PubMed  Google Scholar 

  4. Alessio L, Berlin A, Dell'Orto A, Toffoletto F, Ghezzi I . Reliability of urinary creatinine as a parameter used to adjust values of urinary biological indicators. Int Arch Occup Environ Health 1985; 55: 99–106.

    Article  CAS  PubMed  Google Scholar 

  5. Akerstrom M, Lundh T, Barregard L, Sallsten G . Sampling of urinary cadmium: differences between 24- h urine and overnight spot urine sampling, and impact of adjustment for dilution. Int Arch Occup Environ Health 2012; 85: 189–196.

    Article  CAS  PubMed  Google Scholar 

  6. Buchet JP, Staessen J, Roels H, Lauwerys R, Fagard R . Geographical and temporal differences in the urinary excretion of inorganic arsenic: a Belgian population study. Occup Environ Med 1996; 53: 320–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Daniel J, Ziaee H, Pradhan C, McMinn DJ . Six-year results of a prospective study of metal ion levels in young patients with metal-on-metal hip resurfacings. J Bone Joint Surg Br 2009; 91: 176–179.

    Article  CAS  PubMed  Google Scholar 

  8. Heavner DL, Morgan WT, Sears SB, Richardson JD, Byrd GD, Ogden MW . Effect of creatinine and specific gravity normalization techniques on xenobiotic biomarkers in smokers' spot and 24- h urines. J Pharm Biomed Anal 2006; 40: 928–942.

    Article  CAS  PubMed  Google Scholar 

  9. Hinwood AL, Sim MR, de Klerk N, Drummer O, Gerostamoulos J, Bastone EB . Are 24- hour urine samples and creatinine adjustment required for analysis of inorganic arsenic in urine in population studies? Environ Res 2002; 88: 219–224.

    Article  CAS  PubMed  Google Scholar 

  10. Minoia C, Sabbioni E, Apostoli P, Pietra R, Pozzoli L, Gallorini M et al. Trace element reference values in tissues from inhabitants of the European community. I. A study of 46 elements in urine, blood and serum of Italian subjects. Sci Total Environ 1990; 95: 89–105.

    Article  CAS  PubMed  Google Scholar 

  11. Sieniawska CE, Jung LC, Olufadi R, Walker V . Twenty-four-hour urinary trace element excretion: reference intervals and interpretive issues. Ann Clin Biochem 2012; 49: 341–351.

    Article  CAS  PubMed  Google Scholar 

  12. Staessen J, Bulpitt CJ, Roels H, Bernard A, Fagard R, Joossens JV et al. Urinary cadmium and lead concentrations and their relation to blood pressure in a population with low exposure. Br J Ind Med 1984; 41: 241–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Miler M, Šimundić AM . Low level of adherence to instructions for 24- hour urine collection among hospital out-patients. Biochem Med 2013; 23: 316–320.

    Article  Google Scholar 

  14. Araki S, Sata F, Murata K . Adjustment for urinary flow rate: an improved approach to biological monitoring. Int Arch Occup Environ Health 1990; 62: 471–477.

    Article  CAS  PubMed  Google Scholar 

  15. Greenberg GN, Levine RJ . Urinary creatinine excretion is not stable: a new method for assessing urinary toxic substance concentrations. J Occup Med 1989; 31: 832–838.

    Article  CAS  PubMed  Google Scholar 

  16. Vij HS, Howell S . Improving the specific gravity adjustment method for assessing urinary concentrations of toxic substances. Am Ind Hyg Assoc J 1998; 59: 375–380.

    Article  CAS  PubMed  Google Scholar 

  17. Bingham SA, Cummings JH . The use of creatinine output as a check on the completeness of 24- hour urine collections. Hum Nutr Clin Nutr 1985; 39: 343–353.

    CAS  PubMed  Google Scholar 

  18. De Keyzer W, Huybrechts I, Dekkers AL, Geelen A, Crispim S, Hulshof PJ et al. Predicting urinary creatinine excretion and its usefulness to identify incomplete 24 h urine collections. Br J Nutr 2012; 108: 1118–1125.

    Article  CAS  PubMed  Google Scholar 

  19. Garde AH, Hansen AM, Kristiansen J, Knudsen LE . Comparison of uncertainties related to standardization of urine samples with volume and creatinine concentration. Ann Occup Hyg 2004; 48: 171–179.

    CAS  PubMed  Google Scholar 

  20. Narayanan S, Appleton HD . Creatinine: a review. Clin Chem 1980; 26: 1119–1126.

    CAS  PubMed  Google Scholar 

  21. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL . Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 2005; 113: 192–200.

    Article  CAS  PubMed  Google Scholar 

  22. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39: S1–266.

    Google Scholar 

  23. Soveri I, Berg UB, Björk J, Elinder CG, Grubb A, Mejare I et al. Measuring GFR: a systematic review. Am J Kidney Dis 2014; 64: 411–424.

    Article  PubMed  Google Scholar 

  24. Chaumont A, De WF, Dumont X, Haufroid V, Bernard A . The threshold level of urinary cadmium associated with increased urinary excretion of retinol-binding protein and beta 2-microglobulin: a re-assessment in a large cohort of nickel-cadmium battery workers. Occup Environ Med 2011; 68: 257–264.

    Article  CAS  PubMed  Google Scholar 

  25. Haddam N, Samira S, Dumont X, Taleb A, Lison D, Haufroid V, Bernard A . Confounders in the assessment of the renal effects associated with low-level urinary cadmium: an analysis in industrial workers. Environ Health 2011; 10: 37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nermell B, Lindberg AL, Rahman M, Berglund M, Persson LA, El Arifeen S, Vahter M . Urinary arsenic concentration adjustment factors and malnutrition. Environ Res 2008; 106: 212–218.

    Article  CAS  PubMed  Google Scholar 

  27. Kim DK, Song JW, Park JD, Choi BS . A comparison of the adjustment methods for assessing urinary concentrations of cadmium and arsenic: creatinine vs. specific gravity. J Environ Health Sci 2011; 37: 450–459.

    CAS  Google Scholar 

  28. Hoet P, Jacquerye C, Deumer G, Lison D, Haufroid V . Reference values and upper reference limits for 26 trace elements in the urine of adults living in Belgium. Clin Chem Lab Med 2013; 51: 839–849.

    Article  CAS  PubMed  Google Scholar 

  29. Berlin A, Alessio L, Sesana G, Dell'Orto A, Ghezzi I . Problems concerning the usefulness of adjustment of urinary cadmium for creatinine and specific gravity. Int Arch Occup Environ Health 1985; 55: 107–111.

    Article  CAS  PubMed  Google Scholar 

  30. Sauvé JF, Levesque M, Huard M, Drolet D, Lavoué J, Tardiff R, Truchon G . Creatinine and specific gravity normalization in biological monitoring of occupational exposures. J Occup Environ Hyg 2015; 12: 123–129.

    Article  PubMed  Google Scholar 

  31. Sorahan T, Pang D, Esmen N, Sadhra S . Urinary concentrations of toxic substances: an assessment of alternative approaches to adjusting for specific gravity. J Occup Environ Hyg 2008; 5: 721–723.

    Article  CAS  PubMed  Google Scholar 

  32. Suwazono Y, Akesson A, Alfven T, Jarup L, Vahter M . Creatinine versus specific gravity-adjusted urinary cadmium concentrations. Biomarkers 2005; 10: 117–126.

    Article  CAS  PubMed  Google Scholar 

  33. Cone EJ, Caplan YH, Moser F, Robert T, Shelby MK, Black DL . Normalization of urinary drug concentrations with specific gravity and creatinine. J Anal Toxicol 2009; 33: 1–7.

    Article  CAS  PubMed  Google Scholar 

  34. Pearson MA, Lu C, Schmotzer BJ, Waller LA, Riederer AM . Evaluation of physiological measures for correcting variation in urinary output: Implications for assessing environmental chemical exposure in children. J Expo Sci Environ Epidemiol 2009; 19: 336–342.

    Article  CAS  PubMed  Google Scholar 

  35. Waikar SS, Sabbisetti VS, Bonventre JV . Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int 2010; 78: 486–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Health Canada. Report on human biomonitoring of environmental chemicals in Canada. Results of the Canadian Health Measures Survey Cycle 1 (2007–2009). August 2010. Available from http://www.healthcanada.gc.ca. Accessed June, 2014.

  37. Centers for Disease Control and Prevention (CDC). Fourth national report on human exposure to environmental chemicals, updated tables, August 2014. Available from http://www.cdc.gov/exposurereport/. Accessed October, 2014.

  38. Frery N, Saoudi A, Garnier R, Zeghnoun A, Falq G . Exposition de la population française aux substances chimiques de l'environnement. Institut de Veille Sanitaire: Saint-Maurice. 2011, 151 p.

    Google Scholar 

  39. WHO Biological Monitoring of Chemical Exposure in the Workplace Guidelines Vol 1 Contribution to the International Programme on Chemical Safety WHO/HPR /OCH 961. Geneva. 1996.

  40. Bader M, Messerer P, Will W . Urinary creatinine concentrations in an industrial workforce and comparison with reference values of the general population. Int Arch Occup Environ Health 2013; 86: 673–680.

    Article  CAS  PubMed  Google Scholar 

  41. Moriguchi J, Ezaki T, Tsukahara T, Furuki K, Fukui Y, Okamoto S et al. Comparative evaluation of four urinary tubular dysfunction markers, with special references to the effects of aging and correction for creatinine concentration. Toxicol Lett 2003; 143: 279–290.

    Article  CAS  PubMed  Google Scholar 

  42. Akerstrom M, Barregard L, Lundh T, Sallsten G . The relationship between cadmium in kidney and cadmium in urine and blood in an environmentally exposed population. Toxicol Appl Pharmacol 2013; 268: 286–293.

    Article  CAS  PubMed  Google Scholar 

  43. Chaumont A, Nickmilder M, Dumont X, Lundh T, Skerfving S, Bernard A . Associations between proteins and heavy metals in urine at low environmental exposures: evidence of reverse causality. Toxicol Lett 2012; 210: 345–352.

    Article  CAS  PubMed  Google Scholar 

  44. Shelley R, Kim NS, Parsons PJ, Lee BK, Agnew J, Jaar BG et al. Uranium associations with kidney outcomes vary by urine concentration adjustment method. J Expo Sci Environ Epidemiol 2014; 24: 58–64.

    Article  CAS  PubMed  Google Scholar 

  45. Weaver VM, Vargas GG, Silbergeld EK, Rothenberg SJ, Fadrowski JJ, Rubio-Andrade M et al. Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents. Environ Res 2014; 132: 226–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Basu A, Mitra S, Chung J, Guha Mazumder DN, Ghosh N, Kalman D et al. Creatinine, diet, micronutrients, and arsenic methylation in West Bengal, India. Environ Health Perspect 2011; 119: 1308–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gamble MV, Liu X . Urinary creatinine and arsenic metabolism. Environ Health Perspect 2005; 113: A442–A443.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Trevisan A, Nicoletto G, Maso S, Grandesso G, Odynets A, Secondin L . Biological monitoring of cadmium exposure: reliability of spot urine samples. Int Arch Occup Environ Health 1994; 65: 373–375.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perrine Hoet.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoet, P., Deumer, G., Bernard, A. et al. Urinary trace element concentrations in environmental settings: is there a value for systematic creatinine adjustment or do we introduce a bias?. J Expo Sci Environ Epidemiol 26, 296–302 (2016). https://doi.org/10.1038/jes.2015.23

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2015.23

Keywords

This article is cited by

Search

Quick links