Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Variability in the fraction of ambient fine particulate matter found indoors and observed heterogeneity in health effect estimates

Abstract

Exposure to ambient (outdoor-generated) fine particulate matter (PM2.5) occurs predominantly indoors. The variable efficiency with which ambient PM2.5 penetrates and persists indoors is a source of exposure error in air pollution epidemiology and could contribute to observed temporal and spatial heterogeneity in health effect estimates. We used a mass balance approach to model F for several scenarios across which heterogeneity in effect estimates has been observed: with geographic location of residence, residential roadway proximity, socioeconomic status, and central air-conditioning use. We found F is higher in close proximity to primary combustion sources (e.g. proximity to traffic) and for lower income homes. F is lower when PM2.5 is enriched in nitrate and with central air-conditioning use. As a result, exposure error resulting from variability in F will be greatest when these factors have high temporal and/or spatial variability. The circumstances for which F is lower in our calculations correspond to circumstances for which lower effect estimates have been observed in epidemiological studies and higher F values correspond to higher effect estimates. Our results suggest that variability in exposure misclassification resulting from variability in F is a possible contributor to heterogeneity in PM-mediated health effect estimates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Dominici F., Peng R.D., Bell M.L., Pham L., McDermott A., and Zeger S.L., et al. Fine particulate air pollution and hospital admissions for cardiovascular and respiratory diseases. JAMA 2006: 295: 1127–1134.

    Article  CAS  Google Scholar 

  2. Franklin M., Zeka A., and Schwartz J. Association between PM2.5 and all-cause and specific cause mortality in 27 US communities. J Expo Sci Environ Epidemiol 2007: 17: 279–287.

    Article  CAS  Google Scholar 

  3. Bell M.L., Ebisu K., Peng R.D., Walker J., Samet J.M., Zeger S.L., and Dominici F. Seasonal and regional short-term effects of fine particles on hospital admissions in 202 US counties, 1999–2008. Am J Epidemiol 2008: 168: 1301–1310.

    Article  Google Scholar 

  4. Franklin M., Zeka A., and Schwartz J. The role of particle composition on the association between PM2.5 and mortality. Epidemiology 2008: 19: 680–689.

    Article  Google Scholar 

  5. Bell M.L., Ebisu K., Peng R.D., Samet J.M., and Dominici F. Hospital admissions and chemical composition of fine particle air pollution. Am J Respir Crit Care Med 2009a: 179: 1115–1120.

    Article  CAS  Google Scholar 

  6. Peng R.D., Bell M.L., Geyh A.S., McDermott A., Zeger S.L., Samet J.M., and Dominici F. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ Health Perspect 2009: 117: 957–963.

    Article  CAS  Google Scholar 

  7. Ito K., Mathes R., Ross Z., Nadas A., Thurston G., and Matte T. Fine particulate matter constituents associated with cardiovascular hospitalizations and mortality in New York City. Environ Health Perspect 2011: 119: 467–473.

    Article  CAS  Google Scholar 

  8. Hoek G., Brunekreef B., Goldbohm S., Fischer P., and van den Brandt P.A. Association between mortality and indicators of traffic-related air pollution in the Netherlands. Lancet 2002: 360: 1203–1209.

    Article  Google Scholar 

  9. Gauderman W.J., Avol E., Lurmann F., Kuenzli N., Gilliland F., and Peters J., et al. Childhood asthma and exposure to traffic and nitrogen dioxide. Epidemiology 2005: 16: 737–743.

    Article  Google Scholar 

  10. McConnell R., Berhane K., Yao L., Jerrett M., Lurmann F., and Gilliland F., et al. Traffic, susceptibility, and childhood asthma. Environ Health Perspect 2006: 114: 766–772.

    Article  CAS  Google Scholar 

  11. Brauer M., Lencar C., Tamburic L., Koehoorn M., Demers P., and Karr C. A cohort study of traffic-related air pollution impacts on birth outcomes. Environ Health Perspect 2008: 116: 680–686.

    Article  Google Scholar 

  12. Sacks J.D., Stanek L.W., Luben T.J., Johns D.O., Buckley B.J., and Brown J.S., et al. Particulate matter-induced health effects: who is susceptible? Environ Health Perspect 2011: 119: 446–454.

    Article  Google Scholar 

  13. Klepeis N.E., Nelson W.C., Ott W.R., Robinson J.P., Tsang A.M., and Switzer P., et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Sci Environ Epidemiol 2001: 11: 231–252.

    Article  CAS  Google Scholar 

  14. Long C.M., Suh H.H., Catalano P.J., and Koutrakis P. Using time- and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environ Sci Technol 2001: 35: 2089–2099.

    Article  CAS  Google Scholar 

  15. Meng Q.Y., Turpin B.J., Polidori A., Lee J.H., Weisel C.P., Morandi M., and Winer A., et al. PM2.5 of ambient origin: estimates and exposure errors relevant to PM epidemiology. Environ Sci Technol 2005: 39: 5105–5112.

    Article  CAS  Google Scholar 

  16. Nazaroff W.W. Indoor particle dynamics. Indoor Air 2004: 14 (S7): 175–183.

    Article  Google Scholar 

  17. Dominici F., Zeger S.L., and Samet J.M. A measurement error model for time-series studies of air pollution and mortality. Biostatistics 2000: 1: 157–175.

    Article  CAS  Google Scholar 

  18. Zeger S.L., Thomas D., Dominici F., Samet J.M., Schwartz J., and Dockery D., et al. Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ Health Perspect 2000: 108: 419–426.

    Article  CAS  Google Scholar 

  19. US Environmental Protection Agency.. Integrated Science Assessment for Particulate Matter (Final Report), EPA/600/R-08/139F, US Environmental Protection Agency: Washington, DC, 2009.

  20. Janssen N.A., Schwartz H.J., Zanobetti A., and Suh H.H. Air conditioning and source-specific particles as modifiers of the effect of PM10 on hospital admissions for heart and lung disease. Environ Health Perspect 2002: 110: 43–49.

    Article  CAS  Google Scholar 

  21. Zeka A., Zanobetti A., and Schwartz J. Short-term effects of particulate matter on cause specific mortality: effects of lags and modification by city-specific characteristics. Occup Environ Med 2005: 62: 718–725.

    Article  CAS  Google Scholar 

  22. Bell M.L., Ebisu K., Peng R.D., and Dominici F. Adverse health effects of particulate air pollution: modification by air conditioning. Epidemiology 2009b: 19: 680–689.

    Google Scholar 

  23. Thornburg J.W., Ensor D.S., Rodes C.E., Lawless P.A., Sparks L.E., and Mosely R.B. Penetration of particles into buildings and associated physical factors, Part I: model development and computer simulations. Aerosol Sci Tech 2001: 34: 284–296.

    Article  CAS  Google Scholar 

  24. Waring M.S., and Siegel J.A. Particle loading rates for HVAC filters, heat exchangers, and ducts. Indoor Air 2008: 18: 209–224.

    Article  CAS  Google Scholar 

  25. Breen M.S., Breen M., Williams R.W., and Schultz B.D. Predicting residential air exchange rates from questionnaires and meteorology: model evaluation in central North Carolina. Environ Sci Technol 2010: 44: 9349–9356.

    Article  CAS  Google Scholar 

  26. Riley W.J., McKone T.E., Lai A.C.K., and Nazaroff W.W. Indoor particulate matter of outdoor origin: importance of size-dependent removal mechanisms. Environ Sci Technol 2002: 36: 200–207.

    Article  CAS  Google Scholar 

  27. Meng Q.Y., Turpin B.J., Lee J.H., Polidori A., Weisel C.P., and Morandi M., et al. How does infiltration behavior modify the composition of ambient PM2.5 in indoor spaces? An analysis of RIOPA data. Environ Sci Technol 2007: 41: 7315–7321.

    Article  CAS  Google Scholar 

  28. Lunden M.M., Thatcher T.L., Hering S.V., and Brown N.J. The use of time- and chemically-resolved particulate data to characterize the infiltration of outdoor PM2.5 into a residence in the San Joaquin Valley. Environ Sci Technol 2003a: 37: 4724–4732.

    Article  CAS  Google Scholar 

  29. Hering S.V., Lunden M.M., Thatcher T.L., Kirchstetter T.W., and Brown N.J. Using regional data and building leakage to assess indoor concentrations of particles of outdoor origin. Aerosol Sci Tech 2007: 41: 639–654.

    Article  Google Scholar 

  30. Polidori A., Turpin B., Meng Q.Y., Lee J.H., Weisel C., and Morandi M., et al. Fine organic particulate matter dominates indoor-generated PM2.5 in RIOPA homes. J Expo Sci Environ Epidemiol 2006: 16: 321–331.

    Article  CAS  Google Scholar 

  31. Drewnick F., Jayne J.T., Canagaratna M., Worsnop D.R., and Demerjian K.L. Measurement of ambient aerosol composition during the PMTACS-NY 2001 using an aerosol mass spectrometer. Part II: chemically speciated mass distributions. Aerosol Sci Tech 2004: 38: 104–117.

    Article  CAS  Google Scholar 

  32. Ge X.L., Zhang Q., Sun Y.L., Ruchi C.R., and Setyan A. Impacts of aqueous-phase processing on aerosol chemistry and size distributions in Fresno, California, during wintertime. Environmental Chemistry (in press).

  33. Lena T.S., Ochieng S., Carter M., Holguin-Veras J., and Kinney P.L. Elemental carbon and PM2.5 levels in an urban community heavily impacted by truck traffic. Environ Health Perspect 2002: 110: 1009–1015.

    Article  CAS  Google Scholar 

  34. Lunden M.M., Revzan K.L., Fischer M.L., Thatcher T.L., Littlejohn D., and Hering S.C., et al. The transformation of outdoor ammonium nitrate aerosols in the indoor environment. Atmospheric Environ 2003b: 37: 5633–5644.

    Article  CAS  Google Scholar 

  35. DeCarlo P., Slowik J.G., Worsnop D.R., Davidovits P., and Jimenez J.L. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci Tech 2004: 38: 1185–1205.

    Article  CAS  Google Scholar 

  36. Chen C., and Zhao B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environ 2011: 45: 275–288.

    Article  CAS  Google Scholar 

  37. US EPA. Exposure Factors Handbook (Final Report). US Environmental Protection Agency: Washington, DC, EPA/600/P-95/002F a-c, 1997.

  38. John W., Wall S.M., Ondo J.L., and Winklmayr W. Modes in the size distributions of atmospheric inorganic aerosol. Atmospheric Environ 1990: 24A: 2349–2359.

    Article  CAS  Google Scholar 

  39. Pandis S., Davidson C., and Robinson A., NARSTO EPA_SS_PITTSBURGH Gas Conc and PM Physical Properties Data. 2007. Available on-line ( http://eosweb.larc.nasa.gov/PRODOCS/narsto/table_narsto.html) at the Atmospheric Science Data Center at NASA Langley Research Center, Hampton, Virginia, USA 2007.

  40. Liu D.L., and Nazaroff W.W. Modeling particle penetration across building envelopes. Atmospheric Environ 2001: 35: 4451–4462.

    Article  CAS  Google Scholar 

  41. Williams R., Suggs J., Rea A., Sheldon R., Rodes C., and Thornburg J. The Research Triangle Park particulate matter panel study: modeling ambient source contribution to personal and residential PM mass concentrations. Atmospheric Environ 2003: 37: 5365–5378.

    Article  CAS  Google Scholar 

  42. Sarnat S.E., Coull B.A., Ruiz P.A., Koutrakis P., and Suh H.H. The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, Residences. J Air Waste Manag Assoc 2006: 56: 186–196.

    Article  CAS  Google Scholar 

  43. Lunden M.M., Kirchstetter T.W., Thatcher T.L., Hering S.V., and Brown N.J. Factors affecting the indoor concentration of carbonaceous aerosols of outdoor origin. Atmospheric Environ 2008: 42: 5660–5671.

    Article  CAS  Google Scholar 

  44. NARSTO. Particulate Matter Science for Policy Makers: A NARSTO Assessment, P. McMurry, M. Shepherd, and J. Vickery, (eds). Cambridge University Press: Cambridge, England, 2004.

  45. Burke J.M., Zufall M.J., and Ozkaynak H. A population exposure model for particulate matter: case study results for PM2.5 in Philadelphia, PA. J Exposure Anal Environ Epidemiol 2001: 11: 470–489.

    Article  CAS  Google Scholar 

  46. Lipsky E.M., and Robinson A.L. Effects of dilution on fine particle mass and partitioning of semivolatile organics in diesel exhaust and wood smoke. Environ Sci Technol 2006: 40: 155–162.

    Article  CAS  Google Scholar 

  47. Polidori A., Kwon J., Turpin B.J., and Weisel C. Source proximity and residential outdoor concentrations of PM2.5, OC, EC, and PAHs. J Expo Sci Environ Epidemiol 2009: 20: 457–468.

    Article  Google Scholar 

  48. Naumova Y.Y., Offenberg J.H., Eisenreich S.J., Meng Q.Y., Polidori A., and Turpin B.J., et al. Gas/particle distribution of polycyclic aromatic hydrocarbons in coupled indoor/outdoor atmospheres. Atmospheric Environ 2003: 37: 703–719.

    Article  CAS  Google Scholar 

  49. Thatcher T.L., Lunden M.M., Revzan K.L., Sextro R.G., and Brown N.J. A concentration rebound method for measuring particle penetration and deposition in the indoor environment. Aerosol Sci Tech 2003: 37: 847–864.

    Article  CAS  Google Scholar 

  50. Wallace L., Emmerich S.J., and Howard-Reed C. Effect of central fans and in-duct filters on deposition rates of ultrafine and fine particles in an occupied townhouse. Atmospheric Environ 2004: 38: 405–413.

    Article  CAS  Google Scholar 

  51. Chan W.R., Nazaroff W.W., Price P.N., Sohn M.D., and Gadgil A.J. Analyzing a database of residential air leakage in the United States. Atmospheric Environ 2005: 39: 3445–3455.

    Article  CAS  Google Scholar 

  52. Sherman M.H., and Grimsrud D.T. Measurement of Infiltration Using Fan Pressurization and Weather Data. Lawrence Berkeley National Laboratory Report: LBNL- 10852, Berkeley, CA, 1980.

    Google Scholar 

  53. Sherman M.H., and Dickerhoff D.J. Airtightness of US dwellings. ASHRAE Transactions 1998: 104: 1359–1367.

    Google Scholar 

  54. Persily A., Musser A., and Emmerich S.J. Modeled infiltration rate distributions for US housing. Indoor Air 2010: 20: 473–485.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge helpful discussions with Janet Burke and Pamela Ohman-Strickland, as well as data from William Nazaroff. This research was funded in part by the US Environmental Protection Agency (Cooperative Agreement CR-83407201-0), NIEHS-sponsored UMDNJ Center for Environmental Exposures and Disease (NIEHS P30ES005022), and the New Jersey Agricultural Experiment Station. Natasha Hodas was supported by a Graduate Assistance in Areas of National Need Fellowship and an EPA STAR Fellowship. Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara J Turpin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodas, N., Meng, Q., Lunden, M. et al. Variability in the fraction of ambient fine particulate matter found indoors and observed heterogeneity in health effect estimates. J Expo Sci Environ Epidemiol 22, 448–454 (2012). https://doi.org/10.1038/jes.2012.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2012.34

Keywords

This article is cited by

Search

Quick links