Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Variability of environmental exposure to fine particles, black smoke, and trace elements among a Swedish population

Abstract

Mixed-effects models were used to estimate within-person and between-person variance components, and some determinants of environmental exposure to particulate matter (PM2.5), black smoke (BS) and trace elements (Cl, K, Ca, Ti, Fe, Ni, Cu, Zn, and Pb) for personal measurements from 30 adult subjects in Gothenburg, Sweden. The within-person variance component dominated the total variability for all investigated compounds except for PM2.5 and Zn (in which the variance components were about equal). Expressed as fold ranges containing 95% of the underlying distributions, the within-person variance component ranged between 5-fold and 39-fold (median: sixfold), whereas the between-person variance component was always <sixfold (median: threefold). The relatively large within-person variance components can lead to attenuation bias in exposure–response relationships and point to the importance of obtaining repeated samples of PM exposure from study subjects in epidemiological investigations of urban air pollution. On the basis of the variance components estimated for the various particulate species, between 3 and 39 repeated measurements per subject would be required to limit attenuation bias to 20%. Significant determinants for personal exposure levels were urban background air concentrations (PM2.5, BS, Cl, Zn, and Pb), cigarette smoking (PM2.5, BS, K, and Ti), season (PM2.5, Fe, and Pb), and the time spent outdoors or in traffic (Fe).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Adgate J.L., Mongin S.J., Pratt G.C., Zhang J., Field M.P., and Ramachandran G., et al. Relationships between personal, indoor, and outdoor exposures to trace elements in PM(2.5). Sci Total Environ 2007: 386 (1–3): 21–32.

    Article  CAS  PubMed  Google Scholar 

  • Adgate J.L., Ramachandran G., Pratt G.C., Waller L.A., and Sexton K. Spatial and temporal variability in outdoor, indoor, and personal PM2.5 exposure. Atmos Environ 2002: 36 (20): 3255–3265.

    Article  CAS  Google Scholar 

  • Brown K.W., Sarnat J.A., Suh H.H., Coull B.A., and Koutrakis P. Factors influencing relationships between personal and ambient concentrations of gaseous and particulate pollutants. Sci Total Environ 2009: 407 (12): 3754–3765.

    Article  CAS  PubMed  Google Scholar 

  • Brunekreef B., Noy D., and Clausing P. Variability of exposure measurements in environmental epidemiology. Am J Epidemiol 1987: 125 (5): 892–898.

    Article  CAS  PubMed  Google Scholar 

  • Burstyn I., Kromhout H., Kauppinen T., Heikkila P., and Boffetta P. Statistical modelling of the determinants of historical exposure to bitumen and polycyclic aromatic hydrocarbons among paving workers. Ann Occup Hyg 2000: 44 (1): 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Chang M.J., Naworal J.D., Walker K., and Connell C.T. Investigations on the direct introduction of cigarette smoke for trace elements analysis by inductively coupled plasma mass spectrometry. Spectrochim Acta B 2003: 58 (11): 1979–1996.

    Article  Google Scholar 

  • Clayton C.A., Perritt R.L., Pellizzari E.D., Thomas K.W., Whitmore R.W., and Wallace L.A., et al. Particle Total Exposure Assessment Methodology (PTEAM) study: distributions of aerosol and elemental concentrations in personal, indoor, and outdoor air samples in a southern California community. J Expo Anal Environ Epidemiol 1993: 3 (2): 227–250.

    CAS  PubMed  Google Scholar 

  • Ebelt S.T., Petkau A.J., Vedal S., Fisher T.V., and Brauer M. Exposure of chronic obstructive pulmonary disease patients to particulate matter: relationships between personal and ambient air concentrations. J Air Waste Manag Assoc 2000: 50 (7): 1081–1094.

    Article  CAS  PubMed  Google Scholar 

  • Egeghy P.P., Quackenboss J.J., Catlin S., and Ryan P.B. Determinants of temporal variability in NHEXAS-Maryland environmental concentrations, exposures, and biomarkers. J Expo Anal Environ Epidemiol 2005: 15 (5): 388–397.

    Article  CAS  PubMed  Google Scholar 

  • Gotschi T., Oglesby L., Mathys P., Monn C., Manalis N., and Koistinen K., et al. Comparison of black smoke and PM2.5 levels in indoor and outdoor environments of four European cities. Environ Sci Technol 2002: 36 (6): 1191–1197.

    Article  PubMed  Google Scholar 

  • Gustafson P., Barregard L., Lindahl R., and Sallsten G. Formaldehyde levels in Sweden: personal exposure, indoor, and outdoor concentrations. J Expo Anal Environ Epidemiol 2005: 15 (3): 252–260.

    Article  CAS  PubMed  Google Scholar 

  • Hagstrom K., Lundholm C., Eriksson K., and Liljelind I. Variability and determinants of wood dust and resin acid exposure during wood pellet production: measurement strategies and bias in assessing exposure-response relationships. Ann Occup Hyg 2008: 52 (8): 685–694.

    PubMed  Google Scholar 

  • Hornung R.W., and Reed L.D. Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg 1990: 5: 46–51.

    Article  CAS  Google Scholar 

  • Janssen N.A., Hoek G., Brunekreef B., and Harssema H. Mass concentration and elemental composition of PM10 in classrooms. Occup Environ Med 1999: 56 (7): 482–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen N.A., Hoek G., Brunekreef B., Harssema H., Mensink I., and Zuidhof A. Personal sampling of particles in adults: relation among personal, indoor, and outdoor air concentrations. Am J Epidemiol 1998: 147 (6): 537–547.

    Article  CAS  PubMed  Google Scholar 

  • Janssen N.A., Lanki T., Hoek G., Vallius M., de Hartog J.J., and Van Grieken R., et al. Associations between ambient, personal, and indoor exposure to fine particulate matter constituents in Dutch and Finnish panels of cardiovascular patients. Occup Environ Med 2005: 62 (12): 868–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannesson S., Gustafson P., Molnar P., Barregard L., and Sallsten G. Exposure to fine particles (PM2.5 and PM1) and black smoke in the general population: personal, indoor, and outdoor levels. J Expo Sci Environ Epidemiol 2007: 17 (7): 613–624.

    Article  CAS  PubMed  Google Scholar 

  • Kim D., Sass-Kortsak A., Purdham J.T., Dales R.E., and Brook J.R. Sources of personal exposure to fine particles in Toronto, Ontario, Canada. J Air Waste Manag Assoc 2005: 55 (8): 1134–1146.

    Article  CAS  PubMed  Google Scholar 

  • Kinney P.L., Aggarwal M., Northridge M.E., Janssen N.A., and Shepard P. Airborne concentrations of PM(2.5) and diesel exhaust particles on Harlem sidewalks: a community-based pilot study. Environ Health Perspect 2000: 108 (3): 213–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koistinen K.J., Edwards R.D., Mathys P., Ruuskanen J., Kunzli N., and Jantunen M.J. Sources of fine particulate matter in personal exposures and residential indoor, residential outdoor and workplace microenvironments in the Helsinki phase of the EXPOLIS study. Scand J Work Environ Health 2004: 30 (Suppl 2): 36–46.

    CAS  PubMed  Google Scholar 

  • Koistinen K.J., Hanninen O., Rotko T., Edwards R.D., Moschandreas D., and Jantunen M.J. Behavioral and environmental determinants of personal exposures to PM2.5 in EXPOLIS—Helsinki, Finland. Atmos Environ 2001: 35 (14): 2473–2481.

    Article  CAS  Google Scholar 

  • Kromhout H., Symanski E., and Rappaport S.M. A comprehensive evaluation of within- and between-worker components of occupational exposure to chemical agents. Ann Occup Hyg 1993: 37 (3): 253–270.

    CAS  PubMed  Google Scholar 

  • Kromhout H., Tielemans E., Preller L., and Heederik D. Estimates of individual dose from current exposure measurements. Occup Hyg 1996: 3 (23): 23–39.

    CAS  Google Scholar 

  • Lanki T., Ahokas A., Alm S., Janssen N.A., Hoek G., and De Hartog J.J., et al. Determinants of personal and indoor PM2.5 and absorbance among elderly subjects with coronary heart disease. J Expo Sci Environ Epidemiol 2007: 17 (2): 124–133.

    Article  CAS  PubMed  Google Scholar 

  • Lee K., Bartell S.M., and Paek D. Interpersonal and daily variability of personal exposures to nitrogen dioxide and sulfur dioxide. J Expo Anal Environ Epidemiol 2004: 14 (2): 137–143.

    Article  CAS  PubMed  Google Scholar 

  • Liljelind I.E., Rappaport S.M., Levin J.O., Stromback A.E., Sunesson A.L., and Jarvholm B.G. Comparison of self-assessment and expert assessment of occupational exposure to chemicals. Scand J Work Environ Health 2001: 27 (5): 311–317.

    Article  CAS  PubMed  Google Scholar 

  • Lin Y.S., Kupper L.L., and Rappaport S.M. Air samples versus biomarkers for epidemiology. Occup Environ Med 2005: 62 (11): 750–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L.J., Box M., Kalman D., Kaufman J., Koenig J., and Larson T., et al. Exposure assessment of particulate matter for susceptible populations in Seattle. Environ Health Perspect 2003: 111 (7): 909–918.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra U.C., Shaikh G.N., and Sadasivan S. Trace-elements in tobacco and tobacco-smoke by X-ray-fluorescence technique. J Radioan Nucl Ch Ar 1986: 102 (1): 27–35.

    Article  CAS  Google Scholar 

  • Molnar P., Bellander T., Sallsten G., and Boman J. Indoor and outdoor concentrations of PM2.5 trace elements at homes, preschools and schools in Stockholm, Sweden. J Environ Monit 2007: 9 (4): 348–357.

    Article  CAS  PubMed  Google Scholar 

  • Molnar P., Johannesson S., Boman J., Barregard L., and Sallsten G. Personal exposures and indoor, residential outdoor, and urban background levels of fine particle trace elements in the general population. J Environ Monit 2006: 8 (5): 543–551.

    Article  CAS  PubMed  Google Scholar 

  • Pellizzari E.D., Clayton C.A., Rodes C.E., Mason R.E., Piper L.L., and Fort B., et al. Particulate matter and manganese exposures in Toronto, Canada. Atmos Environ 1999: 33 (5): 721–734.

    Article  CAS  Google Scholar 

  • Peretz C., Goren A., Smid T., and Kromhout H. Application of mixed-effects models for exposure assessment. Ann Occup Hyg 2002: 46 (1): 69–77.

    CAS  PubMed  Google Scholar 

  • Pope III C.A., and Dockery D.W. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 2006: 56 (6): 709–742.

    Article  CAS  PubMed  Google Scholar 

  • Preller L., Kromhout H., Heederik D., and Tielen M.J. Modeling long-term average exposure in occupational exposure-response analysis. Scand J Work Environ Health 1995: 21 (6): 504–512.

    Article  CAS  PubMed  Google Scholar 

  • Rappaport S.M. Assessment of long-term exposures to toxic substances in air. Ann Occup Hyg 1991: 35 (1): 61–121.

    CAS  PubMed  Google Scholar 

  • Rappaport S.M., and Kupper L.L. Variability of environmental exposures to volatile organic compounds. J Expo Anal Environ Epidemiol 2004: 14 (1): 92–107.

    Article  CAS  PubMed  Google Scholar 

  • Rappaport S.M., and Kupper L.L. Qantitative Exposure Assessment. Stephen Rappaport, El Cerrito, CA, USA, 2008.

    Google Scholar 

  • Rappaport S.M., Weaver M., Taylor D., Kupper L., and Susi P. Application of mixed models to assess exposures monitored by construction workers during hot processes. Ann Occup Hyg 1999: 43 (7): 457–469.

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Bracho L., Suh H.H., Catalano P.J., and Koutrakis P. Personal exposures to particles and their relationships with personal activities for chronic obstructive pulmonary disease patients living in Boston. J Air Waste Manag Assoc 2004: 54 (2): 207–217.

    Article  PubMed  Google Scholar 

  • Sarnat J.A., Brown K.W., Bartell S.M., Sarnat S.E., Wheeler A.J., and Suh H.H., et al. The relationship between averaged sulfate exposures and concentrations: results from exposure assessment panel studies in four U.S. cities. Environ Sci Technol 2009: 43 (13): 5028–5034.

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger R.B. The health impact of common inorganic components of fine particulate matter (PM2.5) in ambient air: a critical review. Inhal Toxicol 2007: 19 (10): 811–832.

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger R.B., Kunzli N., Hidy G.M., Gotschi T., and Jerrett M. The health relevance of ambient particulate matter characteristics: coherence of toxicological and epidemiological inferences. Inhal Toxicol 2006: 18 (2): 95–125.

    Article  CAS  PubMed  Google Scholar 

  • Sorensen M., Loft S., Andersen H.V., Raaschou-Nielsen O., Skovgaard L.T., and Knudsen L.E., et al. Personal exposure to PM2.5, black smoke and NO2 in Copenhagen: relationship to bedroom and outdoor concentrations covering seasonal variation. J Expo Anal Environ Epidemiol 2005: 15 (5): 413–422.

    Article  PubMed  Google Scholar 

  • Spaan S., Schinkel J., Wouters I.M., Preller L., Tielemans E., and Nij E.T., et al. Variability in endotoxin exposure levels and consequences for exposure assessment. Ann Occup Hyg 2008: 52 (5): 303–316.

    CAS  PubMed  Google Scholar 

  • Swietlicki E., Puri S., Hansson H.C., and Edner H. Urban air pollution source apportionment using a combination of aerosol and gas monitoring techniques. Atmos Environ 1996: 30 (15): 2795–2809.

    Article  CAS  Google Scholar 

  • Symanski E., Chan W., and Chang C.C. Mixed-effects models for the evaluation of long-term trends in exposure levels with an example from the nickel industry. Ann Occup Hyg 2001: 45 (1): 71–81.

    Article  CAS  PubMed  Google Scholar 

  • Symanski E., Maberti S., and Chan W. A meta-analytic approach for characterizing the within-worker and between-worker sources of variation in occupational exposure. Ann Occup Hyg 2006: 50 (4): 343–357.

    PubMed  Google Scholar 

  • Tielemans E., Kupper L.L., Kromhout H., Heederik D., and Houba R. Individual-based and group-based occupational exposure assessment: some equations to evaluate different strategies. Ann Occup Hyg 1998: 42 (2): 115–119.

    Article  CAS  PubMed  Google Scholar 

  • Vallius M., Lanki T., Tiittanen P., Koistinen K., Ruuskanen J., and Pekkanen J. Source apportionment of urban ambient PM2.5 in two successive measurement campaigns in Helsinki, Finland. Atmos Environ 2003: 37 (5): 615–623.

    Article  CAS  Google Scholar 

  • WHO. WHO Air Quality Guidelines Global Update 2005. World Health Organization, Regional Office for Europe, Bonn, Germany, Copenhagen, Denmark, 2005.

Download references

Acknowledgements

The project was funded by the Swedish Environmental Protection Agency. We acknowledge Peter Molnár for performing the ED–XRF analyses of the trace elements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Johannesson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johannesson, S., Rappaport, S. & Sallsten, G. Variability of environmental exposure to fine particles, black smoke, and trace elements among a Swedish population. J Expo Sci Environ Epidemiol 21, 506–514 (2011). https://doi.org/10.1038/jes.2011.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2011.13

Keywords

This article is cited by

Search

Quick links