Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Increased glycogen synthase kinase-3β and hexose-6-phosphate dehydrogenase expression in adipose tissue may contribute to glucocorticoid-induced mouse visceral adiposity

Abstract

Background:

Increased adiposity in visceral depots is a crucial feature associated with glucocorticoid (GC) excess. The action of GCs in a target tissue is regulated by GC receptor (GR) and 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) coupled with hexose-6-phosphate dehydrogenase (H6pdh). Glycogen synthase kinase-3β (GSK3β) is known to be a crucial mediator of ligand-dependent gene transcription. We hypothesized that the major effects of corticosteroids on adipose fat accumulation are in part mediated by changes in GSK3β and H6pdh.

Methods:

We characterized the alterations of GSK3β and GC metabolic enzymes, and determined the impact of GR antagonist mifepristone on obesity-related genes and the expression of H6pdh and 11ß-HSD1 in adipose tissue of mice exposed to excess GC as well as in in vitro studies using 3T3-L1 adipocytes treated with GCs.

Results:

Corticosterone (CORT) exposure increased abdominal fat mass and induced expression of lipid synthase acetyl-CoA carboxylase and ATP-citrate lyase with activation of GSK3β phosphorylation in abdominal adipose tissue of C57BL/6J mice. Increased pSer9 GSK3β was correlated with the induction of H6pdh and 11ß-HSD1. In addition, mifepristone treatment reversed the production of H6pdh and attenuated CORT-mediated production of 11ß-HSD1 and lipogenic gene expression with reduction of pSer9 GSK3β, thereby leading to improvement of phenotype of adiposity within adipose tissue in mice treated with excess GCs. Suppression of pSer9 GSK3β by mifepristone was accompanied by activation of pThr308 Akt and blockade of CORT-induced adipogenic transcriptor C/EBPα and PPARγ. In addition, mifepristone also attenuated CORT-mediated activation of IRE1α/XBP1. In addition, reduction of H6pdh by shRNA showed comparable effects to mifepristone on attenuating CORT-induced expression of GC metabolic enzymes and improved lipid accumulation in vitro in 3T3-L1 adipocytes.

Conclusion:

These findings suggest that elevated adipose GSK3β and H6pdh expression contribute to 11ß-HSD1 mediating hypercortisolism associated with visceral adiposity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Mayo-Smith W, Hayes CW, Biller BM, Klibanski A . Body fat distribution measured with CT: correlations in healthy subjects, patients with anorexia nervosa, and patients with Cushing syndrome. Radiology 2006; 170: 515–518.

    Article  Google Scholar 

  2. Friedman TC, Mastorakos G, Newman TD, Mullen NM, Horton EG, Costello R et al. Carbohydrate and lipid metabolism in endogenous hypercortisolism: shared features with metabolic syndrome X and NIDDM. Endocr J 1996; 43: 645–655.

    Article  CAS  Google Scholar 

  3. Gurwitz JH, Bohn RL, Glynn RJ, Monane M, Mogun H, Avorn J . Glucocorticoids and the risk for initiation of hypoglycemic therapy. Arch Intern Med 1994; 154: 97–101.

    Article  CAS  Google Scholar 

  4. Hans P, Vanthuyne A, Dewandre PY, Brichant JF, Bonhomme V . Blood glucose concentration profile after 10 mg dexamethasone in nondiabetic and type 2 diabetic patients undergoing abdominal surgery. Br J Anaesth 2006; 97: 164–170.

    Article  CAS  Google Scholar 

  5. Lansang MC, Hustak LK . Glucocorticoid-induced diabetes and adrenal suppression: how to detect and manage them. Cleve Clin J Med 2011; 78: 748–756.

    Article  Google Scholar 

  6. Panthakalam S, Bhatnagar D, Klimiuk P . The prevalence and management of hyperglycaemia in patients with rheumatoid arthritis on corticosteroid therapy. Scott Med J 2004; 49: 139–141.

    Article  CAS  Google Scholar 

  7. Pasternak JJ, McGregor DG, Lanier WL . Effect of single-dose dexamethasone on blood glucose concentration in patients undergoing craniotomy. J Neurosurg 2004; 16: 122–125.

    Google Scholar 

  8. van Staa TP, Leufkens HG, Abenhaim L, Begaud B, Zhang B, Cooper C . Use of oral corticosteroids in the United Kingdom. QJM 2000; 93: 105–111.

    Article  CAS  Google Scholar 

  9. Overman RA, Yeh JY, Deal CL . Prevalence of oral glucocorticoid usage in the United States: A general population perspective. Arthritis Care Res (Hoboken) 2013; 65: 294–298.

    Article  Google Scholar 

  10. Kim J, Temple KA, Jones SA, Meredith KN, Basko JL, Brady MJ . Differential modulation of 3T3-L1 adipogenesis mediated by 11beta-hydroxysteroiddehydrogenase-1 levels. J Biol Chem 2007; 282: 11038–11046.

    Article  CAS  Google Scholar 

  11. Masuzaki H, Paterson J, Shinyama H . A transgenic model of visceral obesity and the metabolic syndrome. Science 2001; 294: 2166–2170.

    CAS  Google Scholar 

  12. Hewitt KN, Walker EA, Stewart PM . Minireview: Hexose-6-phosphate dehydrogenase and redox control of 11β-hydroxysteroid dehydrogenase type 1 activity. Endocrinology 2005; 146: 2539–2543.

    Article  CAS  Google Scholar 

  13. van Schaftingen E, Gerin I . The glucose-6-phosphatase system. Biochem J 2002; 362: 513–532.

    Article  CAS  Google Scholar 

  14. Chou JY, Matern D, Mansfield BC, Chen YT . Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Curr Mol Med 2002; 2: 121–143.

    Article  CAS  Google Scholar 

  15. Odermatt A, Arnold P, Stauffer A, Frey BM, Frey FJ . The N-terminal anchor sequences of 11beta-hydroxysteroid dehydrogenases determine their orientation in the endoplasmic reticulum membrane. J Biol Chem 1999; 274: 28762–28770.

    Article  CAS  Google Scholar 

  16. Ozols J . Isolation and the complete amino acid sequence of luminal endoplasmic reticulum glucose-6-phosphate dehydrogenase. Proc Natl Acad Sci USA 1993; 90: 5302–5306.

    Article  CAS  Google Scholar 

  17. Lavery GG, Walker EA, Turan N, Rogoff D, Ryder JW, Shelton JM et al. Deletion of hexose-6-phosphate dehydrogenase activates the unfolded protein response pathway and induces skeletal myopathy. J Biol Chem 2008; 283: 8453–8461.

    Article  CAS  Google Scholar 

  18. Atanasov AG, Nashev LG, Gelman L, Legeza B, Sack R, Portmann R et al. Direct protein–protein interaction of 11betahydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase in the endoplasmic reticulum lumen. Biochim Biophys Acta 2008; 1783: 1536–1543.

    Article  CAS  Google Scholar 

  19. McCormick KL, Wang X, Mick GJ . Evidence that the 11 betahydroxysteroid dehydrogenase (11 beta-HSD1) is regulated by pentose pathway flux. Studies in rat adipocytes and microsomes. J Biol Chem 2006; 281: 341–347.

    Article  CAS  Google Scholar 

  20. Liu YJ, Nakagawa Y, WangY, Liu L, Du H, Wang W et al. Reduction of hepatic glucocorticoid receptor and hexose-6-phosphate dehydrogenase expression ameliorates diet-induced obesity and insulin resistance in mice. J Mol Endocrinol 2008; 41: 53–64.

    Article  Google Scholar 

  21. Lavery G, Walker EA, Draper N, Jeyasuria P, Marcos J, Shackleton CHL et al. Hexose-6-phosphate dehydrogenase knock-out mice lack 11β-hydroxysteroid dehydrogenase type 1-mediated glucocorticoid generation. J Biol Chem 2006; 281: 6546–6551.

    Article  CAS  Google Scholar 

  22. Wang Y, Liu L, Du H, Nagaoka Y, Fan W, Lutfy K et al. Transgenic overexpression of hexose-6-phosphate dehydrogenase in adipose tissue causes local glucocorticoid amplification and lipolysis in male mice. Am J Physiol Endocrinol Metab 2014; 306: E543–E551.

    Article  CAS  Google Scholar 

  23. Hauner H, Entenmann G, Wabitsch M, Gaillard D, Negrel R, Pfeiffer EF . Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest 1989; 84: 1663–1670.

    Article  CAS  Google Scholar 

  24. Galitzky J, Bouloumie A . Human visceral-fat-specific glucocorticoid tuning of adipogenesis. Cell Metab 2013; 18: 3–5.

    Article  CAS  Google Scholar 

  25. Ballard FJ, Hanson RW, Leveille GA . Phosphoenolpyruvate carboxykinase and the synthesis of glyceride-glycerol from pyruvate in adipose tissue. J Biol Chem 1967; 242: 2746–2750.

    CAS  PubMed  Google Scholar 

  26. Gathercole LL, Morgan SA, Bujalska IJ, Hauton D, Stewart PM, Tomlinson JW . Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue. PLoS ONE 2011; 6: e26223.

    Article  CAS  Google Scholar 

  27. Sha H, He Y, Chen H, Wang C, Zenno A, Shi H et al. The IRE1alpha-XBP1 pathway of the unfolded protein response is required for adipogenesis. Cell Metab 2009; 9: 556–564.

    Article  CAS  Google Scholar 

  28. Das I, Png CW, Oancea I, Hasnain SZ, Lourie R, Proctor M et al. Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins. J Exp Med 2013; 210: 1201–1216.

    Article  CAS  Google Scholar 

  29. Hamilton JA, Ouchi N, LeBrasseur NK, Walsh K . Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab 2008; 7: 159–172.

    Article  Google Scholar 

  30. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL . Inhibition of adipogenesis by Wnt signaling. Science 2000; 289: 950–953.

    Article  CAS  Google Scholar 

  31. Rubio-Patiño C, Palmeri CM, Pérez-Perarnau A, Cosialls AM, Moncunill-Massaguer C, González-Gironès DM et al. Glycogen synthase kinase-3β is involved in ligand-dependent activation of transcription and cellular localization of the glucocorticoid receptor. Mol Endocrinol 2012; 26: 1508–1520.

    Article  Google Scholar 

  32. Chakraborty A, Koldobskiy MA, Bello NT, Maxwell M, Potter JJ, Krishna R et al. Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 2010; 143: 897–910.

    Article  CAS  Google Scholar 

  33. Moon MH, Jeong JK, Lee JH, Park YG, Lee YJ, Seol JW et al. Antiobesity activity of a sphingosine 1-phosphate analogue FTY720 observed in adipocytes and obese mouse model. Exp Mol Med 2012; 44: 603–614.

    Article  CAS  Google Scholar 

  34. Johanssen S, Allolio B . Mifepristone (RU486) in Cushing’s syndrome. Eur J Endocrinol 2007; 157: 561–569.

    Article  CAS  Google Scholar 

  35. Fleseriu M, Biller BMK, Findling JW, Molitch ME, Schteingart DE, Gross C et al. Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab 2012; 97: 2039–2049.

    Article  CAS  Google Scholar 

  36. Havel PJ, Busch BL, Curry DL, Johnson PR, Dallman MF, Stern JS et al. Predominately glucocorticoid agonist actions of RU-486 in young specific pathogen- free Zucker rats. Am J Physiol 1996; 271: R710–R717.

    CAS  PubMed  Google Scholar 

  37. Wang Y, Nakagawa Y, Liu L, Wang W, Ren X, Anghel A et al. Tissue-specific dysregulation of hexose-6-phosphate dehydrogenase and glucose-6-phosphate transporter production in db/db mice as a model of type 2 diabetes. Diabetologia 2011; 54: 440–450.

    Article  CAS  Google Scholar 

  38. Sartor O, Cutler GB Jr . Mifepristone: treatment of Cushing’s syndrome. Clin Obstet Gynecol 1996; 39: 506–510.

    Article  CAS  Google Scholar 

  39. Yaneva M, Mosnier-Pudar H, Dugue MA, Grabar S, Fulla Y, Bertagna X . Midnight salivary cortisol for the initial diagnosis of Cushing’s syndrome of various causes. J Clin Endocrinol Metab 2004; 89: 3345–3351.

    Article  CAS  Google Scholar 

  40. Schuff KG . 2003 Issues in the diagnosis of Cushing’s syndrome for the primary care physician. Prim Care 2003; 30: 791–799.

    Article  Google Scholar 

  41. Karatsoreos IN, Bhagat SM, Bowles NP, Weil ZM, Pfaff DW, McEwen BS . Endocrine and physiological changes in response to chronic corticosterone: a potential model of the metabolic syndrome in mouse. Endocrinology 2010; 151: 2117–2127.

    Article  CAS  Google Scholar 

  42. Wang Y, Yan C, Liu L, Wang W, Du H, Fan W et al. 11β-Hydroxysteroid dehydrogenase type 1 shRNA ameliorates glucocorticoid-induced insulin resistance and lipolysis in mouse abdominal adipose tissue. Am J Physiol Endocrinol Metab 2015; 308: E84–E95.

    Article  CAS  Google Scholar 

  43. Balachandran A, Guan H, Sellan M, van Uum S, Yang K . Insulin and dexamethasone dynamically regulate adipocyte 11beta-hydroxysteroid dehydrogenase type 1. Endocrinology 2008; 149: 4069–4407.

    Article  CAS  Google Scholar 

  44. Patel S, Doble BW, MacAulay K, Sinclair EM, Drucker DJ, Woodgett JR . Tissue-specific role of glycogen synthase kinase 3beta in glucose homeostasis and insulin action. Mol Cell Bio 2008; 28: 6314–6328.

    Article  CAS  Google Scholar 

  45. Uçkaya G, Karadurmus N, Kutlu O, Corakçi A, Kizildag S, Ural AU et al. Adipose tissue 11-beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase gene expressions are increased in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2008; 82: S135–S140.

    Article  Google Scholar 

  46. Yun SI, Yoon HY, Jeong SY, Chung YS . Glucocorticoid induces apoptosis of osteoblast cells through the activation of glycogen synthase kinase 3beta. J Bone Miner Metab 2009; 27: 140–148.

    Article  CAS  Google Scholar 

  47. Akiyama N, Akiyama Y, Kato H, Kuroda T, Ono T, Imagawa K . Pharmacological evaluation of adipose dysfunction via 11β-hydroxysteroid dehydrogenase type 1 in the development of diabetes in diet-induced obese mice with cortisone pellet implantation. J Pharmacol Exp Ther 2014; 349: 66–74.

    Article  Google Scholar 

  48. Beaufrère B, de Parscau L, Chatelain P, Morel Y, Aguercif M, François R . RU 486 administration in a child with Cushing’s syndrome. Lancet 1987; 2: 217–223.

    Article  Google Scholar 

  49. Chu JW, Matthias DF, Belanoff J, Schatzberg A, Hoffman AR, Feldman D . Successful long-term treatment of refractory Cushing’s disease with high-dose mifepristone (RU 486). J Clin Endocrinol Metab 2001; 86: 3568–3573.

    CAS  PubMed  Google Scholar 

  50. Galliher-Beckley AJ, Williams JG, Collins JB, Cidlowski JA . Glycogen synthase kinase 3β-mediated serine phosphorylation of the human glucocorticoid receptor redirects gene expression profiles. Mol Cell Biol 2008; 28: 7309–7322.

    Article  CAS  Google Scholar 

  51. Tae HJ, Zhang S, Kim KH . cAMP activation of CAAT enhancer-binding protein-beta gene expression and promoter I of acetyl-CoA carboxylase. J Biol Chem 1995; 270: 21487–21494.

    Article  CAS  Google Scholar 

  52. Yeh WC, Cao Z, Classon M, McKnight SL . Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev 1995; 9: 168–181.

    Article  CAS  Google Scholar 

  53. Rangwala SM, Lazar MA . Transcriptional control of adipogenesis. Annu Rev Nutr 2000; 20: 535–559.

    Article  CAS  Google Scholar 

  54. Williams LJ, Lyons V, MacLeod I, Rajan V, Darlington GJ, Poli V et al. C/EBP regulates hepatic transcription of 11beta-hydroxysteroid dehydrogenase type 1. A novel mechanism for cross-talk between the C/EBP and glucocorticoid signaling pathways. J Biol Chem 2000; 275: 30232–30239.

    Article  CAS  Google Scholar 

  55. Gout J, Tirard J, Thévenon C, Riou JP, Bégeot M, Naville D . CCAAT/enhancer-binding proteins (C/EBPs) regulate the basal and cAMP- induced transcription of the human 11beta-hydroxysteroid dehydrogenase encoding gene in adipose cells. Biochimie 2006; 88: 1115–1124.

    Article  CAS  Google Scholar 

  56. Jin Q, Zhang F, Yan T, Wang C, Ge X, Zhai Q . C/EBPα regulates SIRT1 expression during adipogenesis. Cell Res 2010; 20: 470–479.

    Article  CAS  Google Scholar 

  57. Ahn J, Lee H, Jung CH, Ha TY . MicroRNA-146b promotes adipogenesis by suppressing the SIRT-FOXO1 cascade. EMBO Mol Med 2013; 5: 1602–1612.

    Article  CAS  Google Scholar 

  58. Carey AL, Vorlander C, Reddy-Luthmoodoo M, Natoli AK, Formosa MF, Bertovic DA et al. Reduced UCP-1 content in in vitro differentiated beige/brite adipocytes derived from preadipocytes of human subcutaneous white adipose tissues in obesity. PLoS One 2014; 9: e91997.

    Article  Google Scholar 

  59. Fu T, Seok S, Choi S, Huang Z, Suino-Powell K, Xu HE et al. MicroRNA 34a inhibits beige and brown fat formation in obesity in part by suppressing adipocyte fibroblast growth factor 21 signaling and SIRT1 function. Mol Cell Bio 2014; 34: 4130–4142.

    Article  Google Scholar 

  60. Zhou JY, Zhong HJ, Yang C, Yan J, Wang HY, Jiang JX . Corticosterone exerts immunostimulatory effects on macrophages via endoplasmic reticulum stress. Br J Surg 2010; 97: 281–293.

    Article  CAS  Google Scholar 

  61. Izumiya Y, Hopkins T, Morris C, Sato K, Zeng L, Viereck J et al. Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab 2008; 7: 159–172.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y Liu is supported by NIH grants SC1DK087655 and SC1DK104821. TC Friedman is supported by NIH grant 2R24DA017298 and U54MD007598. Y Dong is supported by AHA grant 12SDG8760-002. H Yang is supported by Chinese National Natural Science Foundation 81202733. K Lutfy is supported by a TRDRP Grant 339354.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Yang, H., Wang, Y. et al. Increased glycogen synthase kinase-3β and hexose-6-phosphate dehydrogenase expression in adipose tissue may contribute to glucocorticoid-induced mouse visceral adiposity. Int J Obes 40, 1233–1241 (2016). https://doi.org/10.1038/ijo.2016.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2016.57

This article is cited by

Search

Quick links