Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pediatrics

The bigger, the stronger? Insights from muscle architecture and nervous characteristics in obese adolescent girls

Abstract

Background:

Young obese youth are generally stronger than lean youth. This has been linked to the loading effect of excess body mass, acting as a training stimulus comparable to strength training. Whether this triggers specific adaptations of the muscle architecture (MA) and voluntary activation (VA) that could account for the higher strength of obese subjects remains unknown.

Methods:

MA characteristics (that is, pennation angle (PA), fascicle length (FL) and muscle thickness (MT)) and muscle size (that is, anatomical cross-sectional area (ACSA)) of the knee extensor (KE) and plantar flexor (PF) muscles were evaluated in 12 obese and 12 non-obese adolescent girls (12–15 years). Maximal isometric torque and VA of the KE and PF muscles were also assessed.

Results:

Results revealed higher PA (P<0.05), greater MT (P<0.001), ACSA (P<0.01), segmental lean mass (P<0.001) and VA (P<0.001) for KE and PF muscles in obese girls. Moreover, obese individuals produced a higher absolute torque than their lean counterparts on the KE (224.6±39.5 vs 135.7±32.7 N m, respectively; P<0.001) and PF muscles (73.3±16.5 vs 44.5±6.2 N m; P<0.001). Maximal voluntary contraction (MVC) was correlated to PA for the KE (r=0.46–0.57, P<0.05–0.01) and PF muscles (r=0.45–0.55, P<0.05–0.01). MVC was also correlated with VA (KE: r=0.44, P<0.05; PF: r=0.65, P<0.001) and segmental lean mass (KE: r=0.48, P<0.05; PF: r=0.57, P<0.01).

Conclusions:

This study highlighted favorable muscular and nervous adaptations to obesity that account for the higher strength of obese youth. The excess of body mass supported during daily activities could act as a chronic training stimulus responsible for these adaptations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gelfi C, Vasso M, Cerretelli P . Diversity of human skeletal muscle in health and disease: contribution of proteomics. J Proteomics 2011; 74: 774–795.

    Article  CAS  Google Scholar 

  2. Narici M . Human skeletal muscle architecture studied in vivo by non-invasive imaging techniques: functional significance and applications. J Electromyogr Kinesiol 1999; 9: 97–103.

    Article  CAS  Google Scholar 

  3. Kawakami Y, Abe T, Fukunaga T . Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol 1993; 74: 2740–2744.

    Article  CAS  Google Scholar 

  4. Irrcher I, Adhihetty PJ, Joseph AM, Ljubicic V, Hood DA . Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med 2003; 33: 783–793.

    Article  Google Scholar 

  5. Binzoni T, Bianchi S, Hanquinet S, Kaelin A, Sayegh Y, Dumont M et al. Human gastrocnemius medialis pennation angle as a function of age: from newborn to the elderly. J Physiol Anthropol Appl Hum Sci 2001; 20: 293–298.

    Article  CAS  Google Scholar 

  6. Baroni BM, Geremia JM, Rodrigues R, De Azevedo Franke R, Karamanidis K, Vaz MA . Muscle architecture adaptations to knee extensor eccentric training: rectus femoris vs vastus lateralis. Muscle Nerve 2013; 48: 498–506.

    Article  Google Scholar 

  7. Lieber RL, Friden J . Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 2000; 23: 1647–1666.

    Article  CAS  Google Scholar 

  8. Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P . Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol 1989; 59: 310–319.

    Article  CAS  Google Scholar 

  9. Kawakami Y, Abe T, Kuno SY, Fukunaga T . Training-induced changes in muscle architecture and specific tension. Eur J Appl Physiol Occup Physiol 1995; 72: 37–43.

    Article  CAS  Google Scholar 

  10. Ahtiainen JP, Hoffren M, Hulmi JJ, Pietikainen M, Mero AA, Avela J et al. Panoramic ultrasonography is a valid method to measure changes in skeletal muscle cross-sectional area. Eur J Appl Physiol 2010; 108: 273–279.

    Article  Google Scholar 

  11. Jacobs J, Jansen M, Janssen H, Raijmann W, Van Alfen N, Pillen S . Quantitative muscle ultrasound and muscle force in healthy children: a 4-year follow-up study. Muscle Nerve 2013; 47: 856–863.

    Article  Google Scholar 

  12. Kubo K, Kanehisa H, Azuma K, Ishizu M, Kuno SY, Okada M et al. Muscle architectural characteristics in women aged 20-79 years. Med Sci Sports Exerc 2003; 35: 39–44.

    Article  Google Scholar 

  13. Heckmatt JZ, Dubowitz V, Leeman S . Detection of pathological change in dystrophic muscle with B-scan ultrasound imaging. Lancet 1980; 1: 1389–1390.

    Article  CAS  Google Scholar 

  14. Pillen S, van Alfen N, Zwarts MJ . Muscle ultrasound: a grown-up technique for children with neuromuscular disorders. Muscle Nerve 2008; 38: 1213–1214.

    Article  Google Scholar 

  15. Sitnick M, Bodine SC, Rutledge JC . Chronic high fat feeding attenuates load-induced hypertrophy in mice. J Physiol 2009; 587: 5753–5765.

    Article  CAS  Google Scholar 

  16. Maffiuletti N, Ratel S, Sartorio A, Martin V . The impact of obesity on in vivo human muscle function. Curr Obes Rep 2013; 2: 251–260.

    Article  Google Scholar 

  17. De Ste Croix M, Deighan M, Armstrong N . Assessment and interpretation of isokinetic muscle strength during growth and maturation. Sports Med 2003; 33: 727–743.

    Article  Google Scholar 

  18. Kanehisa H, Ikegawa S, Tsunoda N, Fukunaga T . Strength and cross-sectional area of knee extensor muscles in children. Eur J Appl Physiol Occup Physiol 1994; 68: 402–405.

    Article  CAS  Google Scholar 

  19. Abdelmoula A, Martin V, Bouchant A, Walrand S, Lavet C, Taillardat M et al. Knee extension strength in obese and nonobese male adolescents. Appl Physiol Nutr Metab 2012; 37: 269–275.

    Article  Google Scholar 

  20. Duche P, Ducher G, Lazzer S, Dore E, Tailhardat M, Bedu M . Peak power in obese and nonobese adolescents: effects of gender and braking force. Med Sci Sports Exerc 2002; 34: 2072–2078.

    Article  Google Scholar 

  21. Maffiuletti NA, Jubeau M, Agosti F, De Col A, Sartorio A . Quadriceps muscle function characteristics in severely obese and nonobese adolescents. Eur J Appl Physiol 2008; 103: 481–484.

    Article  Google Scholar 

  22. Tsiros MD, Coates AM, Howe PR, Grimshaw PN, Walkley J, Shield A et al. Knee extensor strength differences in obese and healthy-weight 10-to 13-year-olds. Eur J Appl Physiol 2013; 113: 1415–1422.

    Article  Google Scholar 

  23. Gondin J, Guette M, Ballay Y, Martin A . Electromyostimulation training effects on neural drive and muscle architecture. Med Sci Sports Exerc 2005; 37: 1291–1299.

    Article  Google Scholar 

  24. Blimkie CJ, Sale DG, Bar-Or O . Voluntary strength, evoked twitch contractile properties and motor unit activation of knee extensors in obese and non-obese adolescent males. Eur J Appl Physiol Occup Physiol 1990; 61: 313–318.

    Article  CAS  Google Scholar 

  25. Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP et al. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 2001; 534: 613–623.

    Article  CAS  Google Scholar 

  26. Kalofoutis C, Piperi C, Zisaki A, Singh J, Harris F, Phoenix D et al. Differences in expression of cardiovascular risk factors among type 2 diabetes mellitus patients of different age. Ann N Y Acad Sci 2006; 1084: 166–177.

    Article  CAS  Google Scholar 

  27. Xinfei Wen SP, Wang Renwei, Wiklund Petri, Feng Guoshaung, Cheng Shu Mei, XT, Liu Yang et al. Does systemic low-grade inflammation associate with fat accumulation and distribution? A 7-year follow-up study with peripubertal girls. J Clin Endocrinol Metab 2014; 99: 1411–1419.

    Article  Google Scholar 

  28. Yan AF, Voorhees CC, Beck KH, Wang MQ . A social ecological assessment of physical activity among urban adolescents. Am J Health Behav 2014; 38: 379–391.

    Article  Google Scholar 

  29. Tipton KD . Gender differences in protein metabolism. Curr Opin Clin Nutr Metab Care 2001; 4: 493–498.

    Article  CAS  Google Scholar 

  30. Ramos E, Frontera WR, Llopart A, Feliciano D . Muscle strength and hormonal levels in adolescents: gender related differences. Int J Sports Med 1998; 19: 526–531.

    Article  CAS  Google Scholar 

  31. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH . Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000; 320: 1240–1243.

    Article  CAS  Google Scholar 

  32. Tessier S, Vuillemin A, Briançon S . Propriétés psychométriques d'un questionnaire de mesure de l'activité physique chez l'enfant scolarisé âgé de six à dix ans: QAPE-semaine. Sci Sports 2007; 22: 224–231.

    Article  Google Scholar 

  33. Skalsky AJ, Han JJ, Abresch RT, Shin CS, McDonald CM . Assessment of regional body composition with dual-energy X-ray absorptiometry in Duchenne muscular dystrophy: correlation of regional lean mass and quantitative strength. Muscle Nerve 2009; 39: 647–651.

    Article  Google Scholar 

  34. Tanner JM, Whitehouse RH, Hughes PC, Carter BS . Relative importance of growth hormone and sex steroids for the growth at puberty of trunk length, limb length, and muscle width in growth hormone-deficient children. J Pediatr 1976; 89: 1000–1008.

    Article  CAS  Google Scholar 

  35. Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP . An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc 2002; 34: 689–694.

    PubMed  Google Scholar 

  36. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  Google Scholar 

  37. Berg HE, Tedner B, Tesch PA . Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine. Acta Physiol Scand 1993; 148: 379–385.

    Article  CAS  Google Scholar 

  38. Noorkoiv M, Nosaka K, Blazevich AJ . Assessment of quadriceps muscle cross-sectional area by ultrasound extended-field-of-view imaging. Eur J Appl Physiol 2010; 109: 631–639.

    Article  CAS  Google Scholar 

  39. Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P . In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol 1996; 496, Pt 1 287–297.

    Article  CAS  Google Scholar 

  40. Merton PA . Voluntary strength and fatigue. J Physiol 1954; 123: 553–564.

    Article  CAS  Google Scholar 

  41. Kluka V, Martin V, Vicencio SG, Jegu AG, Cardenoux C, Morio C et al. Effect of muscle length on voluntary activation level in children and adults. Med Sci Sports Exerc 2015; 47: 718–724.

    Article  Google Scholar 

  42. Alegre LM, Ferri-Morales A, Rodriguez-Casares R, Aguado X . Effects of isometric training on the knee extensor moment-angle relationship and vastus lateralis muscle architecture. Eur J Appl Physiol 2014; 114: 2437–2446.

    Article  Google Scholar 

  43. Williamson DL, Li Z, Tuder RM, Feinstein E, Kimball SR, Dungan CM . Altered nutrient response of mTORC1 as a result of changes in REDD1 expression: effect of obesity vs REDD1 deficiency. J Appl Physiol 2014; 117: 246–256.

    Article  CAS  Google Scholar 

  44. Anderson AD, Solorzano CM, McCartney CR . Childhood obesity and its impact on the development of adolescent PCOS. Sem Reprod Med 2014; 32: 202–213.

    Article  Google Scholar 

  45. O'Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN . In vivo measurements of muscle specific tension in adults and children. Exp Physiol 2010; 95: 202–210.

    Article  Google Scholar 

  46. Abe T, Fukashiro S, Harada Y, Kawamoto K . Relationship between sprint performance and muscle fascicle length in female sprinters. J Physiol Anthropol Appl Hum Sci 2001; 20: 141–147.

    Article  CAS  Google Scholar 

  47. Maffiuletti NA, Pensini M, Martin A . Activation of human plantar flexor muscles increases after electromyostimulation training. J Appl Physiol 2002; 92: 1383–1392.

    Article  Google Scholar 

  48. Kannas T, Kellis E, Arampatzi F, de Villarreal ES . Medial gastrocnemius architectural properties during isometric contractions in boys and men. Pediatr Excer Sci 2010; 22: 152–164.

    Article  Google Scholar 

  49. Kubo K, Teshima T, Ikebukuro T, Hirose N, Tsunoda N . Tendon properties and muscle architecture for knee extensors and plantar flexors in boys and men. Clin Biomech 2014; 29: 506–511.

    Article  Google Scholar 

  50. Shortland AP, Harris CA, Gough M, Robinson RO . Architecture of the medial gastrocnemius in children with spastic diplegia. Dev Med Child Neurol 2001; 43: 796–801.

    Article  CAS  Google Scholar 

  51. Moreau NG, Teefey SA, Damiano DL . In vivo muscle architecture and size of the rectus femoris and vastus lateralis in children and adolescents with cerebral palsy. Dev Med Child Neurol 2009; 51: 800–806.

    Article  Google Scholar 

  52. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 2006; 17: 4–12.

    CAS  Google Scholar 

  53. Carolan E, Hogan AE, Corrigan M, Gaotswe G, O'Connell J, Foley N et al. The impact of childhood obesity on inflammation, innate immune cell frequency, and metabolic microRNA expression. J Clin Endocrinol Metab 2014; 99: E474–E478.

    Article  CAS  Google Scholar 

  54. Reyes M, Quintanilla C, Burrows R, Blanco E, Cifuentes M, Gahagan S . Obesity is associated with acute inflammation in a sample of adolescents. Pediatr Diabetes 2014; 16: 109–116.

    Article  Google Scholar 

  55. Pillen S, Scholten RR, Zwarts MJ, Verrips A . Quantitative skeletal muscle ultrasonography in children with suspected neuromuscular disease. Muscle Nerve 2003; 27: 699–705.

    Article  CAS  Google Scholar 

  56. Vukovic R, Mitrovic K, Milenkovic T, Todorovic S, Soldatovic I, Sipetic-Grujicic S et al. Insulin-sensitive obese children display a favorable metabolic profile. Eur J Pediatr 2013; 172: 201–206.

    Article  CAS  Google Scholar 

  57. Blazevich AJ, Gill ND, Zhou S . Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat 2006; 209: 289–310.

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by a grant from the Auvergne Regional Council (New Researcher Program 2012—V Martin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Martin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Vicencio, S., Coudeyre, E., Kluka, V. et al. The bigger, the stronger? Insights from muscle architecture and nervous characteristics in obese adolescent girls. Int J Obes 40, 245–251 (2016). https://doi.org/10.1038/ijo.2015.158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.158

This article is cited by

Search

Quick links