Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Bariatric and Metabolic Surgery Review
  • Published:

Bariatric surgery and bone disease: from clinical perspective to molecular insights

Abstract

The use of bariatric surgery for the treatment of morbid obesity has increased annually for the last decade. Although many studies have demonstrated the efficacy and durability of bariatric surgery for weight loss, there are limited data regarding long-term side effects of these procedures. Recently, there has been an increased focus on the impact of bariatric surgery on bone metabolism. Bariatric surgery utilizes one or more of three mechanisms of action resulting in sustained weight loss. These include restriction (gastric banding, vertical banded gastroplasty and sleeve gastrectomy), malabsorption surgery with or without associated restriction (Roux en Y gastric bypass, duodenal switch, biliopancreatic diversion and jejunoileal bypass) and changes in gut-derived hormones that control energy metabolism also referred to as neuro-hormonal control of energy metabolism (Roux en Y gastric bypass, duodenal switch, biliopancreatic diversion, jejunoileal bypass, surgical procedures as above and gastric sleeve). Weight reduction has been associated with increased bone resorption but the mechanisms behind this have not yet been fully elucidated. Each of the mechanisms of action of bariatric surgery (restriction, malabsorption, neuro-hormonal control of energy metabolism) may uniquely affect bone resorption. In this paper we will review the current state of knowledge regarding the relationship between bariatric surgery and bone metabolism with emphasis on possible mechanisms of action such as malnutrition, hormonal interactions and mechanical unloading of the skeleton. Further, we suggest a future research agenda.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM . Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 2006; 295: 1549–1555.

    Article  CAS  PubMed  Google Scholar 

  2. Waxman A . Prevention of chronic diseases: WHO global strategy on diet, physical activity and health. Food Nutr Bull 2003; 24: 281–284.

    PubMed  Google Scholar 

  3. Caballero B . The global epidemic of obesity: an overview. Epidemiol Rev 2007; 29: 1–5.

    PubMed  Google Scholar 

  4. Folli F, Pontiroli AE, Schwesinger WH . Metabolic aspects of bariatric surgery. Med Clin N Am 2007; 91: 393–414.

    CAS  PubMed  Google Scholar 

  5. Zimmet P, Shaw J, Alberti KG . Preventing Type 2 diabetes and the dysmetabolic syndrome in the real world: a realistic view. Diabet Med 2003; 20: 693–702.

    CAS  PubMed  Google Scholar 

  6. National Institutes of Health Consensus Development Panel. Bariatric surgery for morbid obesity: health implications for patients, health professionals, and third-party payers. Ann Intern Med 1991; 115: 956–961.

    Google Scholar 

  7. Smoot TM, Xu P, Hilsenrath P, Kuppersmith NC, Singh KP . Gastric Bypass Surgery in the United States, 1998–2002. Am J Pub Health 2006; 96: 1187–1189.

    Google Scholar 

  8. Fischer BL, Schauer P . Medical and surgical options in the treatment of severe obesity. Am J Surg 2002; 184: 9S–16S.

    Google Scholar 

  9. Pontiroli AE, Folli F, Paganelli M, Micheletto G, Pizzocri P, Vedani P et al. Laparoscopic gastric banding prevents type 2 diabetes and arterial hypertension and induces their remission in morbid obesity: a 4-year case-controlled study. Diabetes Care 2005; 28: 2703–2709.

    PubMed  Google Scholar 

  10. Dixon JB, O'Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA 2008; 299: 316–323.

    CAS  PubMed  Google Scholar 

  11. Sjöström L, Narbro K, Sjöström CD, Karason K, Larsson B, Wedel H et al. Swedish Obese Subjects Study. N Engl J Med 2007; 357: 741–752.

    PubMed  Google Scholar 

  12. Nguyen NT, Stone JA, Nguyen X-M, Hartman JS, Hoyt DB . A prospective randomized trial of laparoscopic gastric bypass versus laparoscopic adjustable gastric banding for the treatment of morbid obesity. Outcomes, quality of life, and costs. Ann Surg 2009; 250: 631–641.

    PubMed  Google Scholar 

  13. Spivak H, Adelmelck MF, Beltran OR, Ng AW, Kitahama S . Long-term outcomes of laparoscopic adjustable gastric banding and laparoscopic Roux-en-Y gastric bypass in the United States. Surg Endosc 2012; 26: 1909–1919.

    PubMed  Google Scholar 

  14. Demaria EJ, Winegar DA, Pate VW, Hutcher NE, Ponce J, Pories WJ . Postoperative outcomes of metabolic surgery to treat diabetes from sites participating in the ASMBS bariatric surgery center of excellence program as reported in the Bariatric Outcomes Longitunal Database. Ann Surg 2010; 252: 559–566.

    PubMed  Google Scholar 

  15. Davies DJ, Baxter JM, Baxter JN . Nutritional deficiencies after bariatric surgery. Obesity Surg 2007; 17: 1150–1158.

    CAS  Google Scholar 

  16. Welbourn R, Pournaras D . Bariatric surgery: a cost-effective intervention for morbid obesity; functional and nutritional outcomes. Proc Nutr Soc 2010; 69: 528–535.

    PubMed  Google Scholar 

  17. Scibora LM, Ikramuddin S, Buchwald H, Petit MA . Examining the link between bariatric surgery, bone loss, and osteoporosis: a review of bone density studies. Obes Surg 2012; 22: 654–667.

    PubMed  Google Scholar 

  18. Williams SE . Metabolic bone disease in the bariatric surgery patient. J Obes 2011; 2011: 634614.

    PubMed  Google Scholar 

  19. Carrasco F, Ruz M, Rojas P, Csendes A, Rebolledo A, Codoceo J et al. Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery. Obes Surg 2009; 19: 41–46.

    PubMed  Google Scholar 

  20. Fleischer J, Stein EM, Bessler M, Della Badia M, Restuccia N, Olivero–Rivera L et al. The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. JCEM 2008; 93: 3735–3740.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. von Mach MA, Stoeckli R, Bilz S, Kraenzlin M, Langer I, Keller U . Changes in bone mineral content after surgical treatment of morbid obesity. Metabolism 2004; 53: 918–921.

    CAS  PubMed  Google Scholar 

  22. Clarke B . Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008; 3 (Suppl 3): S131–S139.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ott SM . Histomorphemetric analysis of bone remodeling. In Bilezikian JP, Raisz LG, Rodan GA, (eds). Principles of Bone Biology, 2nd edn, vol. 1. Academic Press: San Diego, CA, 2002; pp 303–319 (chapter 19).

    Google Scholar 

  24. Martin A, David V, Quarles LD . Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev 2012; 92: 131–155.

    CAS  PubMed  Google Scholar 

  25. Zaidi M . Skeletal remodeling in health and disease. Nat Med 2007; 13: 791–801.

    CAS  PubMed  Google Scholar 

  26. von Mach MA, Stoeckli R, Bilz S, Kraenzlin M, Langer I, Keller U . Changes in bone mineral content after surgical treatment of morbid obesity. Metabolism 2004; 53: 918–921.

    CAS  PubMed  Google Scholar 

  27. Pereira FA, de Castro JA, dos Santos JE, Foss MC, Paula FJ . Impact of marked weight loss induced by bariatric surgery on bone mineral density and remodeling. Braz J Med Biol Res 2007; 40: 509–517.

    CAS  PubMed  Google Scholar 

  28. Ott MT, Fanti P, Malluche HH, Ryo UY, Whaley FS, Strodel WE et al. Biochemical evidence of metabolic bone disease in women following roux-y gastric bypass for morbid obesity. Obes Surg 1992; 2: 341–348.

    CAS  PubMed  Google Scholar 

  29. Berarducci A, Haines K, Murr MM . Incidence of bone loss, falls, and fractures after Roux-en-Y gastric bypass for morbid obesity. Appl Nurs Res 2009; 22: 35–41.

    PubMed  Google Scholar 

  30. Viégas M, Vasconcelos RS, Neves AP, Diniz ET, Bandeira F . Bariatric surgery and bone metabolism: a systematic review. Arq Bras Endocrinol Metabol 2010; 54: 158–163.

    PubMed  Google Scholar 

  31. Karsenty G . Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab 2006; 4: 341–348.

    CAS  PubMed  Google Scholar 

  32. Wucher H, Ciangura C, Poitou C, Czernichow S . Effects of weight loss on bone status after bariatric surgery: association between adipokines and bone markers. Obes Surg 2008; 18: 58–65.

    PubMed  Google Scholar 

  33. Felson DT, Zhang Y, Hannan MT, Anderson JJ . Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 1993; 8: 567–573.

    CAS  PubMed  Google Scholar 

  34. Schoenau E, Frost HM . The ‘muscle-bone unit’ in children and adolescents. Calcif Tissue Int 2002; 70: 405–407.

    CAS  PubMed  Google Scholar 

  35. Ruimerman R (ed). Introduction. In Modeling and Remodeling in Bone Tissue. Technische Universiteit Eindhoven: Eindhoven, 2005; Proefschrift. - ISBN 90-386-2856-0 NUR 954. Chapter 1, p 1.

    Google Scholar 

  36. Frost HM . Bone ‘mass’ and the ‘mechanostat’: a proposal. Anat Rec 1987; 219: 1–9.

    CAS  PubMed  Google Scholar 

  37. Hughes JM, Petit MA . Biological underpinnings of Frost's mechanostat thresholds: the important role of osteocytes. J Musculoskelet Neuronal Interact 2010; 10: 128–135.

    CAS  PubMed  Google Scholar 

  38. Villareal DT, Fontana L, Weiss EP, Racette SB, Steger-May K, Schechtman KB et al. Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: a randomized controlled trial. Arch Intern Med 2006; 166: 2502–2510.

    PubMed  Google Scholar 

  39. Maïmoun L, Fattal C, Micallef JP, Peruchon E, Rabischong P . Bone loss in spinal cord-injured patients: from physiopathology to therapy. Spinal Cord 2006; 44: 203–210.

    PubMed  Google Scholar 

  40. Zerwekh JE, Ruml LA, Gottschalk F, Pak CY . The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res 1998; 13: 1594–1601.

    CAS  PubMed  Google Scholar 

  41. Schneider V, Oganov V, LeBlanc A, Rakmonov A, Taggart L, Bakulin A et al. Bone and body mass changes during space flight. Acta Astronaut 1995; 36: 463–466.

    CAS  PubMed  Google Scholar 

  42. Suva LJ . Sclerostin and the unloading of bone. J Bone Miner Res 2009; 24: 1649–1650.

    CAS  PubMed  Google Scholar 

  43. Day TF, Guo X, Garrett-Beal L, Yang Y . Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005; 8: 739–750.

    CAS  PubMed  Google Scholar 

  44. Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 2009; 24: 1651–1661.

    CAS  PubMed  Google Scholar 

  45. Van Loan MD, Johnson HL, Barbieri TF . Effect of weight loss on bone mineral content and bone mineral density in obese women. Am J Clin Nutr 1998; 67: 734–738.

    CAS  PubMed  Google Scholar 

  46. Earthman CP, Beckman LM, Masodkar K, Sibley SD . The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Int J Obes (Lond) 2011; 36: 387–396.

    Google Scholar 

  47. Williams SE . Metabolic bone disease in the bariatric surgery patient. J Obes 2011; 2011: 634614.

    PubMed  Google Scholar 

  48. Gehrer S, Kern B, Peters T, Christoffel-Courtin C, Peterli R . Fewer nutrient deficiencies after laparoscopic sleeve gastrectomy (LSG) than after laparoscopic Roux-Y-gastric bypass (LRYGB)-a prospective study. Obes Surg 2010; 20: 447–453.

    PubMed  Google Scholar 

  49. Riedt CS, Brolin RE, Sherrell RM, Field MP, Shapses SA . True fractional calcium absorption is decreased after Roux-en-Y gastric bypass surgery. Obesity 2006; 14: 1940–1948.

    CAS  PubMed  Google Scholar 

  50. Shaker JL, Norton AJ, Woods MF, Fallon MD, Findling JW . Secondary hyperparathyroidism and osteopenia in women following gastric exclusion surgery for obesity. Osteoporos Int 1991; 1: 177–181.

    CAS  PubMed  Google Scholar 

  51. Suda T, Ueno Y, Fujii K, Shinki T . Vitamin D and bone. J Cell Biochem 2003; 88: 259–266.

    CAS  PubMed  Google Scholar 

  52. Saliba W, Barnett O, Rennert HS, Lavi I, Rennert G . The relationship between serum 25 (OH)D and parathyroid hormone levels. Am J Med 2011; 124: 1165–1170.

    CAS  PubMed  Google Scholar 

  53. Anderson PH, Atkins GJ . The skeleton as an intracrine organ for vitamin D metabolism. Mol Aspects Med 2008; 29: 397–406.

    CAS  PubMed  Google Scholar 

  54. St-Arnaud R . The direct role of vitamin D on bone homeostasis. Arch Biochem Biophys 2008; 473: 225–230.

    CAS  PubMed  Google Scholar 

  55. van Driel M, Pols HA, van Leeuwen JP . Osteoblast differentiation and control by vitamin D and vitamin D metabolites. Curr Pharm Des 2004; 10: 2535–2555.

    CAS  PubMed  Google Scholar 

  56. van Leeuwen JP, van Driel M, van den Bemd GJ, Pols HA . Vitamin D control of osteoblast function and bone extracellular matrix mineralization. Crit Rev Eukaryot Gene Expr 2001; 11: 199–226.

    CAS  PubMed  Google Scholar 

  57. Stein EM, Strain G, Sinha N, Ortiz D, Pomp A, Dakin G et al. Vitamin D insufficiency prior to bariatric surgery: risk factors and a pilot treatment study. Clin Endocrinol (Oxf) 2009; 71: 176–183.

    CAS  Google Scholar 

  58. Kaulfers AM, Bean JA, Inge TH, Dolan LM, Kalkwarf HJ . Bone loss in adolescents after bariatric surgery. Pediatrics 2011; 127: e956–e961.

    PubMed  PubMed Central  Google Scholar 

  59. Coates PS, Fernstrom JD, Fernstrom MH, Schauer PR, Greenspan SL . Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab 2004; 89: 1061–1065.

    CAS  PubMed  Google Scholar 

  60. Pugnale N, Giusti V, Suter M, Zysset E, Héraïef E, Gaillard RC et al. Bone metabolism and risk of secondary hyperparathyroidism 12 months after gastric banding in obese pre-menopausal women. Int J Obes Relat Metab Disord 2003; 27: 110–116.

    CAS  PubMed  Google Scholar 

  61. Cundy T, Evans MC, Kay RG, Dowman M, Wattie D, Reid IR . Effects of vertical-banded gastroplasty on bone and mineral metabolism in obese patients. Br J Surg 1996; 83: 1468–1472.

    CAS  PubMed  Google Scholar 

  62. Behrns KE, Smith CD, Sarr MG . Prospective evaluation of gastric acid secretion and cobalamin absorption following gastric bypass for clinically severe obesity. Dig Dis Sci 1994; 39: 315–320.

    CAS  PubMed  Google Scholar 

  63. Karsenty G, Oury F . The central regulation of bone mass, the first link between bone remodeling and energy metabolism. J Clin Endocrinol Metab 2010; 95: 4795–4801.

    CAS  PubMed  Google Scholar 

  64. Hammoud A, Gibson M, Hunt SC, Adams TD, Carrell DT, Kolotkin RL et al. Effect of Roux-en-Y gastric bypass surgery on the sex steroids and quality of life in obese men. J Clin Endocrinol Metab 2009; 94: 1329–1332.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Khosla S . Update on estrogens and the skeleton. J Clin Endocrinol Metab 2010; 95: 3569–3577.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Friedman JM, Halaas JL . Leptin and the regulation of body weight in mammals. Nature 1998; 395: 763–770.

    CAS  PubMed  Google Scholar 

  67. Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass,appetite, and energy expenditure. Cell 2009; 138: 976–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. García de la Torre N, Rubio MA, Bordiú E, Cabrerizo L, Aparicio E, Hernández C et al. Effects of weight loss after bariatric surgery for morbid obesity on vascular endothelial growth factor-A, adipocytokines, and insulin. J Clin Endocrinol Metab 2008; 93: 4276–4281.

    PubMed  Google Scholar 

  69. Bruno C, Fulford AD, Potts JR, McClintock R, Jones R, Cacucci BM et al. Serum markers of bone turnover are increased at six and 18 months after Roux-en-Y bariatric surgery: correlation with the reduction in leptin. J Clin Endocrinol Metab 2010; 95: 159–166.

    CAS  PubMed  Google Scholar 

  70. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941–946.

    CAS  PubMed  Google Scholar 

  71. Ohashi K, Ouchi N, Matsuzawa Y . Adiponectin and hypertension. Am J Hypertens 2011; 24: 263–269.

    CAS  PubMed  Google Scholar 

  72. Jansson PA, Pellmé F, Hammarstedt A, Sandqvist M, Brekke H, Caidahl K et al. A novel cellular marker of insulin resistance and early atherosclerosis in humans is related to impaired fat cell differentiation and low adiponectin. FASEB J 2003; 17: 1434–1440.

    CAS  PubMed  Google Scholar 

  73. Kamada Y, Tamura S, Kiso S, Matsumoto H, Saji Y, Yoshida Y et al. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 2003; 125: 1796–1807.

    CAS  PubMed  Google Scholar 

  74. Bråkenhielm E, Veitonmäki N, Cao R, Kihara S, Matsuzawa Y, Zhivotovsky B et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci USA 2004; 101: 2476–2481.

    PubMed  PubMed Central  Google Scholar 

  75. Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 2005; 331: 520–526.

    CAS  PubMed  Google Scholar 

  76. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007; 130: 456–469.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee NK, Karsenty G . Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab 2008; 19: 161–166.

    CAS  PubMed  Google Scholar 

  78. Navaneethan SD, Kelly KR, Sabbagh F, Schauer PR, Kirwan JP, Kashyap SR . Urinary albumin excretion, HMW adiponectin, and insulin sensitivity in type 2 diabetic patients undergoing bariatric surgery. Obes Surg 2010; 20: 308–315.

    PubMed  PubMed Central  Google Scholar 

  79. Zhou L, Deepa SS, Etzler JC, Ryu J, Mao X, Fang Q et al. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. J Biol Chem 2009; 284: 22426–22435.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rosen CJ . Breaking into bone biology: serotonin's secrets. Nat Med 2009; 15: 145–146.

    CAS  PubMed  Google Scholar 

  81. Ducy P, Karsenty G . The two faces of serotonin in bone biology. J Cell Biol 2010; 191: 7–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Karsenty G, Yadav VK . Regulation of bone mass by serotonin: molecular biology and therapeutic implications. Ann Rev Med 2011; 62: 323–331.

    CAS  PubMed  Google Scholar 

  83. Meier JJ, Nauck MA . Clinical endocrinology and metabolism. Glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide. Best Pract Res Clin Endocrinol Metab 2004; 18: 587–606.

    CAS  PubMed  Google Scholar 

  84. Villar HV, Fender HR, Rayford PL, Bloom SR, Ramus NI, Thompson JC . Suppression of gastrin release and gastric secretion by gastric inhibitory polypeptide (GIP) and vasoactive intestinal polypeptide (VIP). Ann Surg 1976; 184: 97–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pederson RA, Schubert HE, Brown JC . Gastric inhibitory polypeptide. Its physiologic release and insulinotropic action in the dog. Diabetes 1975; 24: 1050–1056.

    CAS  PubMed  Google Scholar 

  86. Buffa R, Polak JM, Pearse AG, Solcia E, Grimelius L . Capella C. Identification of the intestinal cell storing gastric inhibitory peptide. Histochemistry 1975; 43: 249–255.

    CAS  PubMed  Google Scholar 

  87. Buchan AM, Polak JM, Capella C, Solcia E, Pearse AG . Electronimmunocytochemical evidence for the K cell localization of gastric inhibitory polypeptide (GIP) in man. Histochemistry 1978; 56: 37–44.

    CAS  PubMed  Google Scholar 

  88. Mortensen K, Christensen LL, Holst JJ, Orskov C . GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 2003; 114: 189–196.

    CAS  PubMed  Google Scholar 

  89. Cleator IG, Gourlay RH . Release of immunoreactive gastric inhibitory polypeptide (IR-GIP) by oral ingestion of food substances. Am J Surg 1975; 130: 128–135.

    CAS  PubMed  Google Scholar 

  90. Creutzfeldt W . The incretin concept today. Diabetologia 1979; 16: 75–85.

    CAS  PubMed  Google Scholar 

  91. Besterman HS, Bloom SR, Sarson DL, Blackburn AM, Johnston DI, Patel HR et al. Gut-hormone profile in celiac disease. Lancet 1978; 1: 785–788.

    CAS  PubMed  Google Scholar 

  92. Wong IP, Baldock PA, Herzog H . Gastrointestinal peptides and bone health. Curr Opin Endocrinol Diabetes Obes 2010; 17: 44–50.

    CAS  PubMed  Google Scholar 

  93. Bollag RJ, Zhong Q, Phillips P, Min L, Zhong L, Cameron R et al. Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors. Endocrinology 2000; 141: 1228–1235.

    CAS  PubMed  Google Scholar 

  94. Zhong Q, Itokawa T, Sridhar S, Ding KH, Xie D, Kang B et al. Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab 2007; 292: E543–E548.

    CAS  PubMed  Google Scholar 

  95. Rao RS, Kini S . GIP and bariatric surgery. Obes Surg 2011; 21: 244–252.

    PubMed  Google Scholar 

  96. Cummings DE, Overduin J . Gastrointestinal regulation of food intake. J Clin Invest 2007; 117: 13–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang DH, Hu YS, Du JJ, Hu YY, Zhong WD, Qin WJ . Ghrelin stimulates proliferation of human osteoblastic TE85 cells via NO/cGMP signaling pathway. Endocrine 2009; 35: 112–117.

    CAS  PubMed  Google Scholar 

  98. Fukushima N, Hanada R, Teranishi H, Fukue Y, Tachibana T, Ishikawa H et al. Ghrelin directly regulates bone formation. J Bone Miner Res 2005; 20: 790–798.

    CAS  PubMed  Google Scholar 

  99. Tymitz K, Engel A, McDonough S, Hendy MP, Kerlakian G . Changes in ghrelin levels following bariatric surgery: review of the literature. Obes Surg 2011; 21: 125–130.

    PubMed  Google Scholar 

  100. Wortley KE, Garcia K, Okamoto H, Thabet K, Anderson KD, Shen V et al. Peptide YY regulates bone turnover in rodents. Gastroenterology 2007; 133: 1534–1543.

    CAS  PubMed  Google Scholar 

  101. Garcia-Fuentes E, Garrido-Sanchez L, Garcia-Almeida JM, Garcia-Arnes J, Gallego-Perales JL, Rivas-Marin J et al. Different effect of laparoscopic Roux-en-Y gastric bypass and open biliopancreatic diversion of Scopinaro on serum PYY and ghrelin levels. Obes Surg 2008; 18: 1424–1429.

    CAS  PubMed  Google Scholar 

  102. Reinehr T, Roth CL, Schernthaner GH, Kopp HP, Kriwanek S, Schernthaner G . Peptide YY and glucagon-like peptide-1 in morbidly obese patients before and after surgically induced weight loss. Obes Surg 2007; 17: 1571–1577.

    PubMed  Google Scholar 

  103. Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK . Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg 2008; 247: 401–407.

    PubMed  Google Scholar 

  104. Mingrone G, Castagneto-Gissey L . Mechanisms of early improvement/resolution of type 2 diabetes after bariatric surgery. Diabetes Metab 2009; 35: 518–523.

    CAS  PubMed  Google Scholar 

  105. Nandagopal R, Brown RJ, Rother KI . Resolution of type 2 diabetes following bariatric surgery: implications for adults and adolescents. Diabetes Technol Ther 2010; 12: 671–677.

    PubMed  PubMed Central  Google Scholar 

  106. Ferrannini E, Mingrone G . Impact of different bariatric surgical procedures on insulin action and beta-cell function in type 2 diabetes. Diabetes Care 2009; 32: 514–520.

    PubMed  PubMed Central  Google Scholar 

  107. Nuche-Berenguer B, Moreno P, Esbrit P, Dapía S, Caeiro JR, Cancelas J et al. Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif Tissue Int 2009; 84: 453–461.

    CAS  PubMed  Google Scholar 

  108. Henriksen DB, Alexandersen P, Byrjalsen I, Hartmann B, Bone HG, Christiansen C et al. Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2. Bone 2004; 34: 140–147.

    CAS  PubMed  Google Scholar 

  109. Holst JJ, Hartmann B, Gottschalck IB, Jeppesen PB, Miholic J, Henriksen DB . Bone resorption is decreased postprandially by intestinal factors and glucagon-like peptide-2 is a possible candidate. Scand J Gastroenterol 2007; 42: 814–820.

    CAS  PubMed  Google Scholar 

  110. Gottschalck IB, Jeppesen PB, Hartmann B, Holst JJ, Henriksen DB . Effects of treatment with glucagon-like peptide-2 on bone resorption in colectomized patients with distal ileostomy or jejunostomy and short-bowel syndrome. Scand J Gastroenterol 2008; 43: 1304–1310.

    CAS  PubMed  Google Scholar 

  111. Grodin JM, Siiteri PK, MacDonald PC . Source of estrogen production in postmenopausal women. J Clin Endocrinol Metab 1973; 36: 207–214.

    CAS  PubMed  Google Scholar 

  112. Fanti P, Monier-Faugere MC, Geng Z, Schmidt J, Morris PE, Cohen D, Malluche HH . The phytoestrogen genistein reduces bone loss in short-term ovariectomized rats. Osteoporos Int 1998; 8: 274–281.

    CAS  PubMed  Google Scholar 

  113. Gallagher JC, Riggs BL, DeLuca HF . Effect of estrogen on calcium absorption and serum vitamin D metabolites in postmenopausal osteoporosis. J Clin Endocrinol Metab 1980; 51: 1359–1364.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from CTSA grant (8UL1TR000149).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F Folli, W Schwesinger or G Muscogiuri.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folli, F., Sabowitz, B., Schwesinger, W. et al. Bariatric surgery and bone disease: from clinical perspective to molecular insights. Int J Obes 36, 1373–1379 (2012). https://doi.org/10.1038/ijo.2012.115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2012.115

Keywords

This article is cited by

Search

Quick links