Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cannabinoid-1 receptor inverse agonists: current understanding of mechanism of action and unanswered questions

Abstract

Rimonabant and taranabant are two extensively studied cannabinoid-1 receptor (CB1R) inverse agonists. Their effects on in vivo peripheral tissue metabolism are generally well replicated. The central nervous system site of action of taranabant or rimonabant is firmly established based on brain receptor occupancy studies. At the whole-body level, the mechanism of action of CB1R inverse agonists includes a reduction in food intake and an increase in energy expenditure. At the tissue level, fat mass reduction, liver lipid reduction and improved insulin sensitivity have been shown. These effects on tissue metabolism are readily explained by CB1R inverse agonist acting on brain CB1R and indirectly influencing the tissue metabolism through the autonomic nervous system. It has also been hypothesized that rimonabant acts directly on adipocytes, hepatocytes, pancreatic islets or skeletal muscle in addition to acting on brain CB1R, although strong support for the contribution of peripherally located CB1R to in vivo efficacy is still lacking. This review will carefully examine the published literature and provide a perspective on what new tools and studies are required to address the peripheral site of action hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 2002; 54: 161–202.

    Article  CAS  PubMed  Google Scholar 

  2. Mackie K . Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol 2005; 168: 299–325.

    Article  CAS  Google Scholar 

  3. Jones D . End of the line for cannabinoid receptor 1 as an anti-obesity target? Nat Rev Drug Disocvery 2008; 7: 961–962.

    Article  CAS  Google Scholar 

  4. Bensaid M, Gary-Bobo M, Esclangon A, Maffrand JP, Le Fur G, Oury-Donat F et al. The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol Pharmacol 2003; 63: 908–914.

    Article  CAS  PubMed  Google Scholar 

  5. Di Marzo V . Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov 2008; 7: 438–455.

    Article  CAS  PubMed  Google Scholar 

  6. Jesudason D, Wittert G . Endocannabinoid system in food intake and metabolic regulation. Curr Opin Lipidol 2008; 19: 344–348.

    Article  CAS  PubMed  Google Scholar 

  7. Cota D . CB1 receptors: emerging evidence for central and peripheral mechanisms that regulate energy balance, metabolism, and cardiovascular health. Diabetes Metab Res Rev 2007; 23: 507–517.

    Article  CAS  PubMed  Google Scholar 

  8. Tucci SA, Halford JC, Harrold JA, Kirkham TC . Therapeutic potential of targeting the endocannabinoids: implications for the treatment of obesity, metabolic syndrome, drug abuse and smoking cessation. Curr Med Chem 2006; 13: 2669–2680.

    Article  CAS  PubMed  Google Scholar 

  9. Hardman JG, Limbird LE . Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th edn. 2001. McGraw-Hill, New York. p. 33.

    Google Scholar 

  10. Martin BR, Stevenson LA, Pertwee RG, Breivogel CS, Williams W, Mahadevan A et al. Agonists and silent antagonists in a series of cannabinoid sulfonamides in Symposium on the Cannabinoids 2002. International Cannabinoid Research Society:Burlington, Vermont, 2.

    Google Scholar 

  11. Fong TM, Guan X-M, Marsh DJ, Shen CP, Stribling DS, Rosko KM et al. Anti-obesity efficacy of a novel cannabinoid-1 receptor inverse agonist MK-0364 in rodents. J Pharmacol Exp Ther 2007; 321: 1013–1022.

    Article  CAS  PubMed  Google Scholar 

  12. Bouaboula M, Perrachon S, Milligan L, Canat X, Rinaldi-Carmona M, Portier M et al. A selective inverse agonist for central cannabinoid receptor inhibits mitogen-activated protein kinase activation stimulated by insulin or insulin-like growth factor 1. Evidence for a new model of receptor/ligand interactions. J Biol Chem 1997; 272: 22330–22339.

    Article  CAS  PubMed  Google Scholar 

  13. Pertwee RG . Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sci 2005; 76: 1307–1324.

    Article  CAS  PubMed  Google Scholar 

  14. Chambers AP, Vemuri VK, Peng Y, Wood JT, Olszewska T, Pittman QJ et al. A neutral CB1 receptor antagonist reduces weight gain in rat. Am J Physiol Regul Integr Comp Physiol 2007; 293: R2185–R2193.

    Article  CAS  PubMed  Google Scholar 

  15. Sink KS, McLaughlin PJ, Wood JA, Brown C, Fan P, Vemuri VK et al. The novel Cannabinoid CB(1) receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 2008; 33: 946–955.

    Article  CAS  PubMed  Google Scholar 

  16. Rinaldi-Carmona M, Le Duigou A, Oustric D, Barth F, Bouaboula M, Carayon P et al. Modulation of CB1 cannabinoid receptor functions after a long-term exposure to agonist or inverse agonist in the Chinese hamster ovary cell expression system. J Pharmacol Exp Ther 1998; 287: 1038–1047.

    CAS  PubMed  Google Scholar 

  17. MacLennan SJ, Reynen PH, Kwan J, Bonhaus DW . Evidence for inverse agonism of SR141716A at human recombinant cannabinoid CB1 and CB2 receptors. Br J Pharmacol 1998; 124: 619–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schlicker E, Kathmann M . Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 2001; 22: 565–572.

    Article  CAS  PubMed  Google Scholar 

  19. Wilson RI, Nicoll RA . Endocannabinoid signaling in the brain. Science 2002; 296: 678–682.

    Article  CAS  PubMed  Google Scholar 

  20. Auclair N, Otani S, Soubrie P, Crepel F . Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons. J Neurophysiol 2000; 83: 3287–3293.

    Article  CAS  PubMed  Google Scholar 

  21. Wallmichrath I, Szabo B . Analysis of the effect of cannabinoids on GABAergic neurotransmission in the substantia nigra pars reticulata. Naunyn Schmiedebergs Arch Pharmacol 2002; 365: 326–334.

    Article  CAS  PubMed  Google Scholar 

  22. Melis M, Pistis M, Perra S, Melis M, Pistis M, Perra S et al. Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J Neurosci 2004; 24: 53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Colombo G, Agabio R, Diaz G, Lobina C, Reali R, Gessa GL. et al. Appetite suppression and weight loss after the cannabinoid antagonist SR141716. Life Sci 1998; 63: 113–117.

    Article  Google Scholar 

  24. Arnone M, Maruani J, Chaperon F, Thiebot M, Poncelet M, Soubrie P et al. Selective inhibition of sucrose and ethanol intake by SR141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacol 1997; 132: 104–106.

    Article  CAS  Google Scholar 

  25. Addy C, Wright H, Van Laere K, Gantz I, Erondu N, Musser BJ et al. The acyclic CB1R inverse agonist taranabant mediates weight loss by increasing energy expenditure and decreasing caloric intake. Cell Metabolism 2008; 7: 68–78.

    Article  CAS  PubMed  Google Scholar 

  26. Ravinet Trillou C, Arnone M, Delgorge C, Gonalons N, Keane P, Maffrand JP et al. Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am J Physiol Regul Integr Comp Physiol 2003; 284: R345–R353.

    Article  PubMed  Google Scholar 

  27. Liu YL, Connoley IP, Wilson CA, Stock MJ . Effects of the cannabinoid CB1 receptor antagonist SR141716 on oxygen consumption and soleus muscle glucose uptake in Lep(ob)/Lep(ob) mice. Int J Obesity 2005; 29: 183–187.

    Article  CAS  Google Scholar 

  28. Herling AW, Gossel M, Haschke G, Stengelin S, Kuhlmann J, Müller G et al. CB1 receptor antagonist AVE1625 affects primarily metabolic parameters independently of reduced food intake in Wistar rats. Am J Physiol Endocrinol Metab 2007; 293: E826–E832.

    Article  CAS  PubMed  Google Scholar 

  29. Burns HD, Van Laere K, Sanabria-Bohorquez S, Hamill TG, Bormans G, Eng WS et al. [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proc Natl Acad Sci USA 2007; 104: 9800–9805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rinaldi-Carmona M, Barth F, Heaulme M, Alonso R, Shire D, Congy C et al. Biochemical and pharmacological characterisation of SR141716A, the first potent and selective brain cannabinoid receptor antagonist. Life Sci 1995; 56: 1941–1947.

    Article  CAS  PubMed  Google Scholar 

  31. Gomez R, Navarro M, Ferrer B, Trigo JM, Bilbao A, Del Arco I et al. A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci 2002; 22: 9612–9617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kirkham TC, Williams CM, Fezza F, Di Marzo V . Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 2002; 136: 550–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jamshidi N, Taylor DA . Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol 2001; 134: 1151–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nogueiras R, Veyrat-Durebex C, Suchanek PM, Klein M, Tschöp J, Caldwell C et al. Peripheral, but not central, CB1 antagonism provides food intake-independent metabolic benefits in diet-induced obese rats. Diabetes 2008; 57: 2977–2991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shimazu T . Liver Innervation and the Neural Control of Hepatic Function 1996. John Libbey: London, UK.

    Google Scholar 

  36. Romijn JA, Fliers E . Sympathetic and parasympathetic innervation of adipose tissue: metabolic implications. Curr Opin Clin Nutr Metab Care 2005; 8: 440–444.

    Article  CAS  PubMed  Google Scholar 

  37. Love JA, Yi E, Smith TG . Autonomic pathways regulating pancreatic exocrine secretion. Auton Neurosci 2007; 133: 19–34.

    Article  CAS  PubMed  Google Scholar 

  38. Uyama N, Geerts A, Reynaert H . Neural connections between the hypothalamus and the liver. Anat Rec A Discov Mol Cell Evol Biol 2004; 280: 808–820.

    Article  PubMed  Google Scholar 

  39. Gilon P, Henquin JC . Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 2001; 22: 565–604.

    CAS  PubMed  Google Scholar 

  40. Teff KL . Visceral nerves: vagal and sympathetic innervation. JPEN J Parenter Enteral Nutr 2008; 32: 569–571.

    Article  PubMed  Google Scholar 

  41. Osei-Hyiaman D, DePetrillo M, Pacher P, Liu J, Radaeva S, Bátkai S et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest 2005; 115: 1298–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kunos G, Osei-Hyiaman D, Batkai S, Sharkey KA, Makriyannis A . Should peripheral CB(1) cannabinoid receptors be selectively targeted for therapeutic gain? Trends Pharmacol Sci 2009; 30: 1–7.

    Article  CAS  PubMed  Google Scholar 

  43. Perio A, Rinaldi-Carmona M, Maruani J, Barth F, Le Fur G, Soubrié P et al. Central mediation of the cannabinoid cue: activity of a selective CB1 antagonist, SR 141716A. Behav Pharmacol 1996; 7: 65–71.

    Article  CAS  PubMed  Google Scholar 

  44. Pavon FJ, Bilbao A, Hernandez-Folgado L, Cippitelli A, Jagerovic N, Abellán G et al. Antiobesity effects of the novel in vivo neutral cannabinoid receptor antagonist 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-hexyl-1H-1,2,4-triazole--LH 21. Neuropharmacology 2006; 51: 358–366.

    Article  CAS  PubMed  Google Scholar 

  45. Chen RZ, Frassetto A, Lao JZ, Huang RR, Xiao JC, Clements MJ et al. Pharmacological evaluation of LH-21, a newly discovered molecule that binds to cannabinoid CB1 receptor. Eur J Pharmacol 2008; 584: 338–342.

    Article  CAS  PubMed  Google Scholar 

  46. LoVerme J, Duranti A, Tontini A, Spadoni G, Mor M, Rivara S et al. Synthesis and characterization of a peripherally restricted CB1 cannabinoid antagonist, URB447, that reduces feeding and body-weight gain in mice. Bioorg Med Chem Lett 2009; 19: 639–643.

    Article  CAS  PubMed  Google Scholar 

  47. Maness LM, Banks WA, Zadina JE, Kastin AJ . Periventricular penetration and disappearance of ICV Tyr-MIF-1, DAMGO, tyrosine, and albumin. Peptides 1996; 17: 247–250.

    Article  CAS  PubMed  Google Scholar 

  48. Dratman MB, Crutchfield FL, Schoenhoff MB . Transport of iodothyronines from bloodstream to brain: contributions by blood:brain and choroid plexus:cerebrospinal fluid barriers. Brain Res 1991; 554: 229–236.

    Article  CAS  PubMed  Google Scholar 

  49. Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 2005; 123: 493–505.

    Article  CAS  PubMed  Google Scholar 

  50. Verty AN, Allen AM, Oldfield BJ . The effects of rimonabant on brown adipose tissue in rat: implications for energy expenditure. Obesity (Silver Spring) 2009; 17: 254–261.

    Article  CAS  Google Scholar 

  51. Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 2003; 302: 84–88.

    Article  CAS  PubMed  Google Scholar 

  52. Osei-Hyiaman D, Liu J, Zhou L, Godlewski G, Harvey-White J, Jeong WI et al. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. J Clin Invest 2008; 118: 3160–3169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cota D, Marsicano G, Tschop M, Grübler Y, Flachskamm C, Schubert M et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest. 2003; 112: 423–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shen CP, Xiao JC, Armstrong H, Hagmann W, Fong TM . F200A substitution in the third transmembrane helix of human cannabinoid CB1 receptor converts AM2233 from receptor agonist to inverse agonist. Eur J Pharmacol 2006; 531: 41–46.

    Article  CAS  PubMed  Google Scholar 

  55. Engeli S, Bohnke J, Feldpausch M, Gorzelniak K, Janke J, Bátkai S et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes 2005; 54: 2838–2843.

    Article  CAS  PubMed  Google Scholar 

  56. Turpault S, Kanamaluru V, Lockwood GF, Bonnet D, Newton J . Rimonabant pharmacokinetics in healthy and obese subjects. Clin Pharmacol Ther 2006; 7950.

  57. Lofgren P, Sjolin E, Wahlen K, Hoffstedt J . Human adipose tissue cannabinoid receptor 1 gene expression is not related to fat cell function or adiponectin level. J Clin Endocrinol Metab 2007; 92: 1555–1559.

    Article  PubMed  Google Scholar 

  58. Hamilton B, Allgaeuer S, Getta P, Halder A, Lorenz A, Rist S et al. Do adipose tissue cannabinoid CB1 receptor modulate adiponectin expression or lipolysis? Obesity Res 2005; 13, (2005 NAASO Program Abstract Supplement)-A162.

  59. Pagano C, Pilon C, Calcagno A, Urbanet R, Rossato M, Milan G et al. The endogenous cannabinoid system stimulates glucose uptake in human fat cells via phosphatidylinositol 3-kinase and calcium-dependent mechanisms. J Clin Endocrinol Metab 2007; 92: 4810–4819.

    Article  CAS  PubMed  Google Scholar 

  60. Matias I, Gonthier MP, Orlando P, Martiadis V, De Petrocellis L, Cervino C et al. Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. J Clin Endocrinol Metab 2006; 91: 3171–3180.

    Article  CAS  PubMed  Google Scholar 

  61. Juan-Pico P, Fuentes E, Bermudez-Silva FJ, Javier Díaz-Molina F, Ripoll C, Rodríguez de Fonseca F et al. Cannabinoid receptors regulate Ca(2+) signals and insulin secretion in pancreatic beta-cell. Cell Calcium 2006; 39: 155–162.

    Article  CAS  PubMed  Google Scholar 

  62. Nakata M, Yada T . Cannabinoids inhibit insulin secretion and cytosolic Ca(2+) oscillation in islet beta-cells via CB1 receptors. Regul Pept 2008; 145: 49–53.

    Article  CAS  PubMed  Google Scholar 

  63. Getty-Kaushik L, Richard AM, Deeney JT, Shirihai O, Corkey BE . Rimonabant decreases insulin hypersecretion in islets from Zucker rats. In. 2007 ADA Annual Scientific Sessions 2007. American Diabetes Association: IL, Chicago. p 1735.

    Google Scholar 

  64. Cavuoto P, McAinch AJ, Hatzinikolas G, Cameron-Smith D, Wittert GA . Effects of cannabinoid receptors on skeletal muscle oxidative pathways. Mol Cell Endocrinol 2007; 267: 63–69.

    Article  CAS  PubMed  Google Scholar 

  65. Irwin N, Hunter K, Flatt PR . Comparison of independent and combined chronic metabolic effects of GIP and CB1 receptor blockade in high-fat fed mice. Peptides 2008; 29: 1036–1041.

    Article  CAS  PubMed  Google Scholar 

  66. Tonstad S . Is rimonabant a safe and effective therapy for sustained weight loss and improved cardiometabolic risk factors? Nat Clin Pract Cardiovasc Med 2006; 3: 364–365.

    Article  PubMed  Google Scholar 

  67. Blundell JE, Goodson S, Halford JC . Regulation of appetite: role of leptin in signalling systems for drive and satiety. Int J Obes Relat Metab Disord 2001; 25: S29–S34.

    Article  CAS  PubMed  Google Scholar 

  68. Halford JC, Cooper GD, Dovey TM . The pharmacology of human appetite expression. Curr Drug Targets 2004; 5: 221–240.

    Article  CAS  PubMed  Google Scholar 

  69. Blundell JE, Jebb SA, Stiubbs RJ, Wilding JR, Lawton S, Halford JCG et al. Effcet of rimonabant on energy intake, motivation to eat and body weight with or without hypocaloric diet: the REBA study. Obesity Rev 2006; 7: 104, Wiley-Blackwell.

    Google Scholar 

  70. Burdyga G, Lal S, Varro A, Dimaline R, Thompson DG, Dockray GJ et al. Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. J Neurosci 2004; 24: 2708–2715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Di Marzo V, Matias I . Endocannabinoid control of food intake and energy balance. Nat Neurosci 2005; 8: 585–589.

    Article  CAS  PubMed  Google Scholar 

  72. Perio A, Barnouin MC, Poncelet M, Soubrie P . Activity of SR141716 on post-reinforcement pauses in operant responding for sucrose reward in rats. Behav Pharmacol 2001; 12: 641–645.

    Article  CAS  PubMed  Google Scholar 

  73. Freedland CS, Poston JS, Porrino LJ . Effects of SR141716A, a central cannabinoid receptor antagonist, on food-maintained responding. Pharmacol Biochem Behav 2000; 67: 265–270.

    Article  CAS  PubMed  Google Scholar 

  74. Rowland NE, Mukherjee M, Robertson K . Effects of the cannabinoid receptor antagonist SR 141716, alone and in combination with dexfenfluramine or naloxone, on food intake in rats. Psychopharmacology (Berl) 2001; 159: 111–116.

    Article  CAS  Google Scholar 

  75. Verty AN, McGregor IS, Mallet PE . Consumption of high carbohydrate, high fat, and normal chow is equally suppressed by a cannabinoid receptor antagonist in non-deprived rats. Neurosci Lett 2004; 354: 217–220.

    Article  CAS  PubMed  Google Scholar 

  76. Koch JE . Delta(9)-THC stimulates food intake in Lewis rats: effects on chow, high-fat and sweet high-fat diets. Pharmacol Biochem Behav 2001; 68: 539–543.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Joyce Harp, Cai Li, Ravi Shankar and Ira Gantz for critically reading the paper and providing valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T M Fong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fong, T., Heymsfield, S. Cannabinoid-1 receptor inverse agonists: current understanding of mechanism of action and unanswered questions. Int J Obes 33, 947–955 (2009). https://doi.org/10.1038/ijo.2009.132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.132

Keywords

This article is cited by

Search

Quick links