Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective

Abstract

Although variation in individual lifestyle and genotype are important factors in explaining individual variation in the risk of developing obesity in an obesogenic environment, there is growing evidence that developmentally plastic processes also contribute. These effects are mediated at least in part through epigenetic processes. These developmental pathways do not directly cause obesity but rather alter the risk of an individual developing obesity later in life. At least two classes of developmental pathway are involved. The mismatch pathway involves the evolved adaptive responses of the developing organism to anticipated future adverse environments, which have maladaptive consequences if the environment is mismatched to that predicted. This pathway can be cued by prenatal undernutrition or stresses that lead the organism to forecast an adverse future environment and change its developmental trajectory accordingly. As a result, individuals develop with central and peripheral changes that increase their sensitivity to an obesogenic environment. It provides a model for how obesity emerges in populations in rapid transition, but also operates in developed countries. There is growing experimental evidence that this pathway can be manipulated by, for example, postnatal leptin exposure. Secondly, maternal diabetes, maternal obesity and infant overfeeding are associated with a greater risk of later obesity. Early life offers a potential point for preventative intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McCance DR, Pettitt DJ, Hanson RL, Jacobsson LT, Bennett PH . Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype? BMJ 1994; 308: 942–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Curhan GC, Chertow GM, Willett WC, Spiegelman D, Colditz GA, Manson JE et al. Birth weight and adult hypertension and obesity in women. Circulation 1996; 94: 1310–1315.

    Article  CAS  PubMed  Google Scholar 

  3. Gluckman PD, Hanson MA . Living with the past: evolution, development, and patterns of disease. Science 2004; 305: 1733–1736.

    Article  CAS  PubMed  Google Scholar 

  4. Butland B, Jebb S, Kopelman P, McPherson K, Thomas S, Mardell J et al. Tackling Obesities: Future Choices (Foresight Project Report). Government Office for Science: London, 2008.

    Google Scholar 

  5. Waddington CH . The Strategy of the Genes: a Discussion of Some Aspects of Theoretical Biology. George Allen & Unwin Ltd: London, 1957.

    Google Scholar 

  6. West-Eberhard MJ . Developmental Plasticity and Evolution. Oxford University Press: New York, 2003.

    Book  Google Scholar 

  7. Oyama S, Griffiths PE, Gray RD (eds). Cycles of Contingency. Developmental Systems and Evolution. MIT Press: Cambridge, MA, 2001.

    Google Scholar 

  8. Gluckman PD, Hanson MA, Spencer HG, Bateson P . Environmental influences during development and their later consequences for health and disease: implications for the interpretation of empirical studies. Proc Royal Soc Lond B 2005; 272: 671–677.

    Google Scholar 

  9. Mrosovsky N . Rheostasis: The Physiology of Change. Oxford University Press: New York, 1990.

    Google Scholar 

  10. Gluckman PD, Hanson MA . The Fetal Matrix: Evolution, Development, and Disease. Cambridge University Press: Cambridge, 2005.

    Google Scholar 

  11. Gluckman PD, Hanson MA, Spencer HG . Predictive adaptive responses and human evolution. Trends Ecol Evol 2005; 20: 527–533.

    Article  PubMed  Google Scholar 

  12. Applebaum SW, Heifetz Y . Density-dependent physiological phase in insects. Annu Rev Entomol 1999; 44: 317–341.

    Article  CAS  PubMed  Google Scholar 

  13. Jablonka E, Oborny B, Molnar I, Kisdi E, Hofbauer J, Czaran T . The adaptive advantage of phenotypic memory in changing environments. Phil Trans R Soc Lond B 1995; 350: 133–141.

    Article  CAS  Google Scholar 

  14. Goldberg AD, Allis CD, Bernstein E . Epigenetics: a landscape takes shape. Cell 2007; 128: 635–638.

    Article  CAS  PubMed  Google Scholar 

  15. Klose RJ, Bird AP . Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006; 31: 89–97.

    Article  CAS  PubMed  Google Scholar 

  16. Lander-Diner L, Cedar H . Silence of the genes—mechanisms of long-term repression. Nat Rev Genet 2005; 6: 648–654.

    Article  Google Scholar 

  17. Horsthemke B . Epimutations in human disease. Curr Topic Microbiol Immunol 2006; 310: 45–59.

    CAS  Google Scholar 

  18. Arnaud P, Feil R . Epigenetic deregulation of genomic imprinting in human disorders and following assisted reproduction. Birth Defects Research Part C 2005; 75: 81–97.

    Article  CAS  PubMed  Google Scholar 

  19. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC . Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 2005; 135: 1382–1386.

    Article  CAS  PubMed  Google Scholar 

  20. Gluckman PD, Lillycrop KA, Vickers MH, Pleasants AB, Phillips ES, Beedle AS et al. Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci USA 2007; 104: 12796–12800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burdge GC, Slater-Jefferies JL, Torrens C, Phillips ES, Hanson MA, Lillycrop KA . Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr 2007; 97: 435–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ . Epigenetic modification of the renin–angiotensin system in the fetal programming of hypertension. Circ Res 2007; 100: 520–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuzawa CW . Adipose tissue in human infancy and childhood: An evolutionary perspective. Yearb Phys Anthropol 1998; 41: 177–209.

    Article  Google Scholar 

  24. Modi N, Thomas EL, Harrington TAM, Uthaya S, Doré CJ, Bell JD . Determinants of adiposity during preweaning postnatal growth in appropriately grown and growth-restricted term infants. Pediatr Res 2006; 60: 345–348.

    Article  PubMed  Google Scholar 

  25. Harrington TAM, Thomas EL, Frost G, Modi N, Bell JD . Distribution of adipose tissue in the newborn. Pediatr Res 2004; 55: 437–441.

    Article  PubMed  Google Scholar 

  26. Aerts L, Van Assche FA . Is gestational diabetes an acquired condition? J Dev Physiol 1979; 1: 219–225.

    CAS  PubMed  Google Scholar 

  27. De Prins FA, Van Assche FA . Intrauterine growth retardation and development of endocrine pancreas in the experimental rat. In: Van Assche FA, Robertson WB (eds). Fetal Growth Retardation. Churchill Livingstone: Edinburgh, 1981, pp 188–196.

    Google Scholar 

  28. Barker DJ, Osmond C . Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986; 1: 1077–1081.

    Article  CAS  PubMed  Google Scholar 

  29. Hales CH, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991; 303: 1019–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kensara O, Wootton S, Phillips D, Patel M, Jackson A, Elia M et al. Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen. Am J Clin Nutr 2005; 82: 980–987.

    Article  CAS  PubMed  Google Scholar 

  31. Godfrey K . The ‘developmental origins’ hypothesis: epidemiology. In: Gluckman PD, Hanson MA (eds). Developmental Origins of Health and Disease. Cambridge University Press: Cambridge, 2006, pp 6–32.

    Chapter  Google Scholar 

  32. Martorell R, Stein AD, Schroeder DG . Early nutrition and later adiposity. J Nutr 2001; 131: 874S–880S.

    Article  CAS  PubMed  Google Scholar 

  33. Ong K, Loos R . Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. Acta Paediatr 2006; 95: 904–908.

    Article  PubMed  Google Scholar 

  34. Ibáñez L, Suarez L, Lopez-Bermejo A, Diaz M, Valls C, de Zegher F . Early development of visceral fat excess following spontaneous catch-up growth in children with low birth weight. J Clin Endocrinol Metab 2008; 93: 925–928.

    Article  PubMed  CAS  Google Scholar 

  35. Ostman J, Amer P, Engfeldt P, Kager L . Regional differences in the control of lipolysis in human adipose tissue. Metabolism 1979; 28: 1198–1205.

    Article  CAS  PubMed  Google Scholar 

  36. Barker DJP, Winter PD, Osmond C, Margetts B, Simmonds SJ . Weight in infancy and death from ischaemic heart disease. Lancet 1989; 2: 577–580.

    Article  CAS  PubMed  Google Scholar 

  37. Osmond C, Barker DJP, Winter PD, Fall CHD, Simmonds SJ . Early growth and death from cardiovascular disease in women. BMJ 1993; 307: 1519–1524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harding JE, Johnston BM . Nutrition and fetal growth. Reprod Fertil Dev 1995; 7: 539–547.

    Article  CAS  PubMed  Google Scholar 

  39. Gluckman PD, Hanson MA . Maternal constraint of fetal growth and its consequences. Semin Fetal Neonatal Med 2004; 9: 419–425.

    Article  PubMed  Google Scholar 

  40. Stettler N, Tershakovec AM, Zemel BS, Leonard MB, Boston RC, Katz SH et al. Early risk factors for increased adiposity: a cohort study of African American subjects followed from birth to young adulthood. Am J Clin Nutr 2000; 72: 378–383.

    Article  CAS  PubMed  Google Scholar 

  41. Godfrey K, Robinson S, Barker DJ, Osmond C, Cox V . Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ 1996; 312: 410–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Godfrey KM, Robinson S, Hales CN, Barker DJ, Osmond C, Taylor KP . Nutrition in pregnancy and the concentrations of proinsulin, 32-33 split proinsulin, insulin, and C-peptide in cord plasma. Diabet Med 1996; 13: 868–873.

    Article  CAS  PubMed  Google Scholar 

  43. Javaid MK, Godfrey KM, Taylor P, Shore SR, Breier B, Arden NK et al. Umbilical venous IGF-1 concentration, neonatal bone mass, and body composition. J Bone Miner Res 2004; 19: 56–63.

    Article  CAS  PubMed  Google Scholar 

  44. Gale CR, Jiang B, Robinson SM, Godfrey KM, Law CM, Martyn CN . Maternal diet during pregnancy and carotid intima-media thickness in children. Arterioscler Thromb Vasc Biol 2006; 26: 1877–1882.

    Article  CAS  PubMed  Google Scholar 

  45. McMillen IC, Robinson JS . Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 2005; 85: 571–633.

    Article  CAS  PubMed  Google Scholar 

  46. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD . Fetal origins of hyperphagia, obesity and hypertension and its postnatal amplification by hypercaloric nutrition. Am J Physiol 2000; 279: E83–E87.

    CAS  Google Scholar 

  47. Bellinger L, Lilley C, Langley-Evans SC . Prenatal exposure to a maternal low-protein diet programmes a preference for high-fat foods in the young adult rat. Br J Nutr 2004; 92: 513–520.

    Article  CAS  PubMed  Google Scholar 

  48. Vickers MH, Breier BH, McCarthy D, Gluckman P . Sedentary behaviour during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am J Physiol 2003; 285: R271–R273.

    CAS  Google Scholar 

  49. Ikenasio-Thorpe BA, Breier BH, Vickers MH, Fraser M . Prenatal influences on susceptibility to diet-induced obesity are mediated by altered neuroendocrine gene expression. J Endocrinol 2007; 193: 31–37.

    Article  CAS  PubMed  Google Scholar 

  50. Gluckman PD, Hanson MA . The developmental origins of the metabolic syndrome. Trends Endocrinol Metab 2004; 15: 183–187.

    Article  CAS  PubMed  Google Scholar 

  51. Burdge GC, Hanson MA, Slater-Jeffries JL, Lillycrop KA . Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br J Nutr 2007; 97: 1036–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Waterland RA, Michels KB . Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 2007; 27: 363–388.

    Article  CAS  PubMed  Google Scholar 

  53. Gluckman PD, Hanson MA, Cooper C, Thornburg K . Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008; 359: 61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stocker C, O’Dowd J, Morton NM, Wargent E, Sennitt MV, Hislop D et al. Modulation of susceptibility to weight gain and insulin resistance in low birth weight rats by treatment of their mothers with leptin during pregnancy and lactation. Int J Obes Relat Metab Disord 2004; 28: 129–136.

    Article  CAS  PubMed  Google Scholar 

  55. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A et al. Neonatal leptin treatment reverses developmental programming. Endocrinology 2005; 146: 4211–4216.

    Article  CAS  PubMed  Google Scholar 

  56. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A et al. The effect of neonatal leptin treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy. Endocrinology 2008; 149: 1906–1913.

    Article  CAS  PubMed  Google Scholar 

  57. Bouret SG, Simerly RB . Leptin and development of hypothalamic feeding circuits. Endocrinology 2004; 145: 2621–2626.

    Article  CAS  PubMed  Google Scholar 

  58. Hales CN, Barker DJ . Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992; 35: 595–601.

    Article  CAS  PubMed  Google Scholar 

  59. Mericq V, Ong KK, Bazaes R, Pena V, Avila A, Salazar T et al. Longitudinal changes in insulin sensitivity and secretion from birth to age three years in small- and appropriate-for-gestational-age children. Diabetologia 2005; 48: 2609–2614.

    Article  CAS  PubMed  Google Scholar 

  60. Bateson P . Fetal experience and good adult design. Int J Epidemiol 2001; 30: 928–934.

    Article  CAS  PubMed  Google Scholar 

  61. Gluckman PD, Hanson MA, Beedle AS . Early life events and their consequences for later disease: a life history and evolutionary perspective. Am J Hum Biol 2007; 19: 1–19.

    Article  PubMed  Google Scholar 

  62. Gluckman PD, Beedle AS, Hanson MA, Vickers MH . Leptin reversal of the metabolic phenotype: evidence for the role of developmental plasticity in the development of the metabolic syndrome. Horm Res 2007; 67 (Suppl 1): 115–120.

    CAS  Google Scholar 

  63. Stoffers DA, Desai BM, DeLeon DD, Simmons RA . Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat. Diabetes 2003; 52: 734–740.

    Article  CAS  PubMed  Google Scholar 

  64. Wyrwoll CS, Mark PJ, Mori TA, Puddey IB, Waddell BJ . Prevention of programmed hyperleptinemia and hypertension by postnatal dietary ω-3 fatty acids. Endocrinology 2006; 147: 599–606.

    Article  CAS  PubMed  Google Scholar 

  65. Bhargava SK, Sachdev HS, Fall CHD, Osmond C, Lakshmy R, Barker DJP et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med 2004; 350: 865–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barker DJ, Osmond C, Forsen TJ, Kajantie E, Eriksson JG . Trajectories of growth among children who have coronary events as adults. N Engl J Med 2005; 353: 1802–1809.

    Article  CAS  PubMed  Google Scholar 

  67. Whincup PH, Gilg JA, Papacosta O, Seymour C, Miller GJ, Alberti KG et al. Early evidence of ethnic differences in cardiovascular risk: cross sectional comparison of British South Asian and white children. BMJ 2002; 324: 635.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gluckman PD, Hanson MA . Evolution, development and timing of puberty. Trends Endocrinol Metab 2006; 17: 7–12.

    Article  CAS  PubMed  Google Scholar 

  69. Sloboda DM, Hart R, Doherty DA, Pennell CE, Hickey M . Age at menarche: influences of prenatal and postnatal growth. J Clin Endocrinol Metab 2007; 92: 46–50.

    Article  CAS  PubMed  Google Scholar 

  70. Sloboda DM, Howie GJ, Vickers MH . Early-onset puberty in offspring after maternal undernutrition is exaggerated by a post-weaning high fat diet: sex specific evidence of nutritional mismatch. Early Hum Dev 2007; 83 (Suppl 1): S65–S66.

    Article  Google Scholar 

  71. Barker DJP, Eriksson JG, Forsén T, Osmond C . Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 2002; 31: 1235–1239.

    Article  CAS  PubMed  Google Scholar 

  72. Prentice AM . The emerging epidemic of obesity in developing countries. Int J Epidemiology 2006; 35: 93–99.

    Article  Google Scholar 

  73. Gluckman PD, Chong YS, Fukuoka H, Beedle AS, Hanson MA . Low birth weight and subsequent obesity in Japan. Lancet 2007; 369: 1081–1082.

    Article  PubMed  Google Scholar 

  74. Robinson SM, Crozier SR, Borland SE, Hammond J, Barker DJ, Inskip HM . Impact of educational attainment on the quality of young women's diets. Eur J Clin Nutr 2004; 58: 1174–1180.

    Article  CAS  PubMed  Google Scholar 

  75. Wu Z, Puigserver P, Spiegelman BM . Transcriptional activation of adipogenesis. Curr Opin Cell Biol 1999; 11: 689–694.

    Article  CAS  PubMed  Google Scholar 

  76. Susa JB, Widness JA, Hintz R, Liu FR, Sehgal P, Schwartz R . Somatomedins and insulin in diabetic pregnancies: effects on fetal macrosomia in the human and rhesus monkey. J Clin Endocrinol Metab 1984; 58: 1099–1105.

    Article  CAS  PubMed  Google Scholar 

  77. Eidelman AI, Samueloff A . The pathophysiology of the fetus of the diabetic mother. Semin Perinatol 2002; 26: 232–236.

    Article  PubMed  Google Scholar 

  78. Catalano PM, Thomas A, Huston-Presley L, Amini SB . Phenotype of infants of mothers with gestational diabetes. Diabetes Care 2007; 30: S156–S160.

    Article  PubMed  Google Scholar 

  79. Silverman BL, Cho NH, Rizzo TA, Metzger BE . Long-term effects of the intrauterine environment. Diabetes Care 1998; 21: B142–B149.

    PubMed  Google Scholar 

  80. Hillier TA, Pedula KL, Schmidt MM, Mullen JA, Charles MA, Pettitt DJ . Childhood obesity and metabolic imprinting: the ongoing effects of maternal hyperglycemia. Diabetes Care 2007; 30: 2287–2292.

    Article  PubMed  Google Scholar 

  81. Lawrence JM, Contreras R, Chen W, Sacks DA . Trends in the prevalence of pre-existing diabetes and gestational diabetes mellitus among a racially/ethnically diverse population of pregnant women, 1999–2005. Diabetes Care 2008; 31: 899–904.

    Article  PubMed  Google Scholar 

  82. Ehrenberg HM, Mercer BM, Catalano PM . The influence of obesity and diabetes on the prevalence of macrosomia. Am J Obstet Gynecol 2004; 191: 964–968.

    Article  CAS  PubMed  Google Scholar 

  83. Whitaker RC . Predicting preschooler obesity at birth: the role of maternal obesity in early pregnancy. Pediatrics 2004; 114: e29–e36.

    Article  PubMed  Google Scholar 

  84. Kral JG, Biron S, Simard S, Hould F-S, Lebel S, Marceau M et al. Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2–18 years. Pediatrics 2006; 118: e1644–e1649.

    Article  PubMed  Google Scholar 

  85. Oken E, Taveras EM, Kleinman KP, Rich-Edwards JW, Gillman MW . Gestational weight gain and child adiposity at age 3 years. Am J Obstet Gynecol 2007; 196: 322e1–322e8.

    Article  Google Scholar 

  86. Gale CR, Javaid MK, Robinson SM, Law CM, Godfrey KM, Cooper C . Maternal size in pregnancy and body composition in children. J Clin Endocrinol Metab 2007; 92: 3904–3911.

    Article  CAS  PubMed  Google Scholar 

  87. Brook JS, Whiteman M, Brook DW . Transmission of risk factors across three generations. Psychol Rep 1999; 85: 227–241.

    Article  CAS  PubMed  Google Scholar 

  88. Davey Smith G, Steer C, Leary S, Ness A . Is there an intrauterine influence on obesity? Evidence from parent-child associations in the Avon Longitudinal Study of Parents and Children (ALSPAC). Arch Dis Childhood 2007; 92: 876–880.

    Article  Google Scholar 

  89. Samuelsson AJ, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EHJM et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 2008; 51: 383–392.

    Article  CAS  PubMed  Google Scholar 

  90. Franke K, Harder T, Aerts L, Melchior K, Fahrenkrog S, Rodekamp E et al. ‘Programming’ of orexigenic and anorexigenic hypothalamic neurons in offspring of treated and untreated diabetic mother rats. Brain Res 2005; 1031: 276–283.

    Article  CAS  PubMed  Google Scholar 

  91. Harder T, Plagemann A, Rohde W, Dörner G . Syndrome X-like alterations in adult female rats due to neonatal insulin treatment. Metabolism 1998; 47: 855–862.

    Article  CAS  PubMed  Google Scholar 

  92. Taylor PD, Poston L . Developmental programming of obesity in mammals. Exp Physiol 2006; 92: 287–298.

    Article  PubMed  CAS  Google Scholar 

  93. Muhlhausler BS, Duffield JA, McMillen IC . Increased maternal nutrition stimulates peroxisome proliferator activated receptor-gamma, adiponectin, and leptin messenger ribonucleic acid expression in adipose tissue before birth. Endocrinology 2007; 148: 878–885.

    Article  CAS  PubMed  Google Scholar 

  94. Muhlhausler BS . Programming of the appetite-regulating neural network: A link between maternal overnutrition and the programming of obesity? J Neuroendocrinol 2007; 19: 67–72.

    Article  CAS  PubMed  Google Scholar 

  95. Muhlhausler BS, Adam-Dagger PA, Findlay CL, Duffield JA, McMillen IC . Increased maternal nutrition alters development of the appetite regulating network in the brain. FASEB J 2006; 20: 1257–1259.

    Article  CAS  PubMed  Google Scholar 

  96. Davidowa H, Plagemann A . Hypothalamic neurons of postnatally overfed, overweight rats respond differentially to corticotropin-releasing hormones. Neurosci Lett 2004; 371: 64–68.

    Article  CAS  PubMed  Google Scholar 

  97. Baird J, Fisher D, Lucas P, Kleijnen J, Roberts H, Law C . Being big or growing fast: systematic review of size and growth in infancy and later obesity. BMJ 2005; 331: 929–931.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Monteiro PO, Victora CG . Rapid growth in infancy and childhood and obesity in later life—a systematic review. Obes Rev 2005; 6: 143–154.

    Article  CAS  PubMed  Google Scholar 

  99. Stettler N . Nature and strength of epidemiological evidence for origins of childhood and adulthood obesity in the first year of life. Int J Obes 2007; 31: 1035–1043.

    Article  CAS  Google Scholar 

  100. Gillman MW, Rifas-Shiman SL, Camargo CA, Berkey CS, Frazier AL, Rockett HRH et al. Risk of overweight among adolescents who were breastfed as infants. JAMA 2001; 285: 2461–2467.

    Article  CAS  PubMed  Google Scholar 

  101. Owen CG, Martin RM, Whincup PH, Davey Smith G, Cook DG . Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics 2005; 115: 1367–1377.

    Article  PubMed  Google Scholar 

  102. Harder T, Bergmann R, Kallischnigg G, Plagemann A . Duration of breastfeeding and risk of overweight: a meta-analysis. Am J Epidemiol 2005; 162: 397–403.

    Article  PubMed  Google Scholar 

  103. Owen CG, Martin RM, Whincup PH, Davey-Smith G, Gillman MW, Cook DG . The effect of breastfeeding on mean body mass index throughout life: A quantitative review of published and unpublished observational evidence. Am J Clin Nutr 2005; 82: 1298–1307.

    Article  CAS  PubMed  Google Scholar 

  104. Singhal A, Wells J, Cole TJ, Fewtrell M, Lucas A . Programming of lean body mass: a link between birth weight, obesity, and cardiovascular disease? Am J Clin Nutr 2003; 77: 726–730.

    Article  CAS  PubMed  Google Scholar 

  105. Singhal A, Cole TJ, Fewtrell M, Deanfield J, Lucas A . Is slower early growth beneficial for long-term cardiovascular health? Circulation 2004; 109: 1108–1113.

    Article  PubMed  Google Scholar 

  106. Ziegler EE . Growth of breast-fed and formula-fed infants. Nestle Nutr Workshop Ser Pediatr Program 2006; 58: 59.

    Google Scholar 

  107. Taveras EM, Scanlon KS, Birch L, Rifas-Shiman SL, Rich-Edwards JW, Gillman MW . Association of breastfeeding with maternal control of infant feeding at age 1 year. Pediatrics 2004; 114: e577–e583.

    Article  PubMed  Google Scholar 

  108. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI . An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444: 1027–1031.

    Article  PubMed  Google Scholar 

  109. Mangel M, Munch SB . A life-history perspective on short- and long-term consequences of compensatory growth. Am Nat 2005; 166: E155–E176.

    Article  PubMed  Google Scholar 

  110. Hales CN, Ozanne SE . The dangerous road of catch-up growth. J Physiol 2003; 547 (Part 1): 5–10.

    Article  CAS  PubMed  Google Scholar 

  111. Ibáñez L, Ong K, Dunger DB, de Zegher F . Early development of adiposity and insulin resistance following catch-up weight gain in small-for-gestational-age children. J Clin Endocrinol Metab 2006; 91: 2153–2158.

    Article  PubMed  CAS  Google Scholar 

  112. Jimenez-Chillaron JC, Patti M-E . To catch up or not to catch up: Is this the question? Lessons from animal models. Curr Opin Endocrinol Diabet Obes 2007; 14: 23–29.

    Article  Google Scholar 

  113. Gluckman PD, Hanson MA . Metabolic disease: evolutionary, developmental and transgenerational influences. In: Hornstra G, Uauy R, Yang X (eds). The Impact of Maternal Nutrition on the Offspring (Nestle Nutrition Workshop Series Pediatric Program Vol. 55). Karger AG: Basel, 2005, pp 17–27.

    Google Scholar 

Download references

Acknowledgements

The authors’ work is funded by the National Research Centre for Growth and Development and grants from the Health Research Council and Marsden Fund (PDG) and the British Heart Foundation (MAH). We thank Chris Kuzawa and Sir Patrick Bateson for stimulating discussions. We acknowledge our ongoing experimental collaborators: Dr Karen Lillycrop, Dr Graham Burdge, Dr Mark Vickers and Dr Deborah Sloboda and Dr Alan Beedle for his thoughtful insights and editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P D Gluckman.

Additional information

Conflict of interest

Peter D Gluckman has received grant support from the National Research Center for Growth and Development (New Zealand). Mark A Hanson has a patent filed involving epigenetic change.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gluckman, P., Hanson, M. Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int J Obes 32 (Suppl 7), S62–S71 (2008). https://doi.org/10.1038/ijo.2008.240

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.240

Keywords

This article is cited by

Search

Quick links