Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models

Abstract

Cancer stem cells (CSCs), which are a rare population in any type of cancer, including colon cancer, are tumorigenic and responsible for cancer recurrence and metastasis. CSCs have been isolated from a number of different solid tumors recently, although the isolation of CSCs in colon cancer is still challenging. We cultured colon cancer cells in stem cell medium to obtain colonosphere cells. These cells possessed the characteristics of CSCs, with a high capacity of tumorigenicity, migration and invasion in vitro and in vivo. The isolation and identification of CSCs have provided new targets for the therapeutics. Oncolytic herpes simplex viruses (oHSV) are an effective strategy for killing colon cancer cells in preclinical models. Here, we examined the efficacy of an oncolytic herpes simplex virus type 2 (oHSV2) in killing colon cancer cells and colon cancer stem-like cells (CSLCs). oHSV2 was found to be highly cytotoxic to the adherent and sphere cells in vitro, and oHSV2 treatment in vivo significantly inhibited tumor growth. This study demonstrates that oHSV2 is effective against colon cancer cells and colon CSLCs and could be a promising strategy for treating colon cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. O'Connell JB, Maggard MA, Ko CY . Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst 2004; 96: 1420–1425.

    Article  PubMed  Google Scholar 

  2. Berrino F, DeAngelis R, Sant M, Rosso S, Bielska-Lasota M, Coebergh JW et al. Survival for eight major cancers and all cancers combined for European adults diagnosed in 1995-99: results of the EUROCARE-4 study. Lancet Oncol 2007; 8: 773–783.

    Article  PubMed  Google Scholar 

  3. Dalerba P, Cho RW, Clarke MF . Cancer stem cells: models and concepts. Annu Rev Med 2007; 58: 267–284.

    Article  CAS  PubMed  Google Scholar 

  4. Hart LS, El-Deiry WS . Invincible, but not invisible: imaging approaches toward in vivo detection of cancer stem cells. J Clin Oncol 2008; 26: 2901–2910.

    Article  PubMed  Google Scholar 

  5. Tang SN, Fu J, Nall D, Rodova M, Shankar S, Srivastava RK . Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer 2012; 131: 30–40.

    Article  CAS  PubMed  Google Scholar 

  6. Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q et al. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 2010; 5: e10277.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 2009; 69: 3382–3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Du L, Wang H, He L, Zhang J, Ni B, Wang X et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 2008; 14: 6751–6760.

    Article  CAS  PubMed  Google Scholar 

  9. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445: 111–115.

    Article  CAS  PubMed  Google Scholar 

  10. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 2009; 457: 608–611.

    Article  CAS  PubMed  Google Scholar 

  11. Chu P, Clanton DJ, Snipas TS, Lee J, Mitchell E, Nguyen ML et al. Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer 2009; 124: 1312–1321.

    Article  CAS  PubMed  Google Scholar 

  12. Fan X, Liu S, Su F, Pan Q, Lin T . Effective enrichment of prostate cancer stem cells from spheres in a suspension culture system. Urol Oncol 2012; 30: 314–318.

    Article  CAS  PubMed  Google Scholar 

  13. Michishita M, Akiyoshi R, Yoshimura H, Katsumoto T, Ichikawa H, Ohkusu-Tsukada K et al. Characterization of spheres derived from canine mammary gland adenocarcinoma cell lines. Res Vet Sci 2011; 91: 254–260.

    Article  CAS  PubMed  Google Scholar 

  14. Rybak AP, He L, Kapoor A, Cutz JC, Tang D . Characterization of sphere-propagating cells with stem-like properties from DU145 prostate cancer cells. Biochim Biophys Acta 2011; 1813: 683–694.

    Article  CAS  PubMed  Google Scholar 

  15. Wei B, Han XY, Qi CL, Zhang S, Zheng ZH, Huang Y et al. Coaction of spheroid-derived stem-like cells and endothelial progenitor cells promotes development of colon cancer. PLoS One 2012; 7: e39069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Russell SJ, Peng KW . Viruses as anticancer drugs. Trends Pharmacol Sci 2007; 28: 326–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015; 33: 2780–2788.

    Article  CAS  PubMed  Google Scholar 

  18. Liu BL, Robinson M, Han ZQ, Branston RH, English C, Reay P et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Therapy 2003; 10: 292–303.

    Article  CAS  PubMed  Google Scholar 

  19. He B, Chou J, Brandimarti R, Mohr I, Gluzman Y, Roizman B . Suppression of the phenotype of gamma (1)34.5 herpes simplex virus 1: failure of activated RNA-dependent protein kinase to shut off protein synthesis is associated with a deletion in the domain of the alpha47 gene. J Virol 1997; 71: 6049–6054.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cassady KA, Gross M, Roizman B . The herpes simplex virus US11 protein effectively compensates for the gamma1(34.5) gene if present before activation of protein kinase R by precluding its phosphorylation and that of the alpha subunit of eukaryotic translation initiation factor 2. J Virol 1998; 72: 8620–8626.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fidler IJ, Kripke ML . Metastasis results from preexisting variant cells within a malignant tumor. Science 1977; 197: 893–895.

    Article  CAS  PubMed  Google Scholar 

  22. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL et al. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006; 66: 9339–9344.

    Article  CAS  PubMed  Google Scholar 

  23. Chaffer CL, Weinberg RA . A perspective on cancer cell metastasis. Science 2011; 331: 1559–1564.

    Article  CAS  PubMed  Google Scholar 

  24. Lawson JC, Blatch GL, Edkins AL . Cancer stem cells in breast cancer and metastasis. Breast Cancer Res Treat 2009; 118: 241–254.

    Article  PubMed  Google Scholar 

  25. Frank NY, Schatton T, Frank MH . The therapeutic promise of the cancer stem cell concept. J Clin Invest 2010; 120: 41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005; 65: 5506–5511.

    Article  CAS  PubMed  Google Scholar 

  27. Fan X, Ouyang N, Teng H, Yao H . Isolation and characterization of spheroid cells from the HT29 colon cancer cell line. Int J Colorectal Dis 2011; 26: 1279–1285.

    Article  PubMed  Google Scholar 

  28. Feng Y, Dai X, Li X, Wang H, Liu J, Zhang J et al. EGF signalling pathway regulates colon cancer stem cell proliferation and apoptosis. Cell Prolif 2012; 45: 413–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aghi M, Martuza RL . Oncolytic viral therapies—the clinical experience. Oncogene 2005; 24: 7802–7816.

    Article  CAS  PubMed  Google Scholar 

  30. Schatton T, Frank NY, Frank MH . Identification and targeting of cancer stem cells. BioEssays 2009; 31: 1038–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138: 645–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F et al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 2004; 5: 91–102.

    Article  CAS  PubMed  Google Scholar 

  33. Huang EH, Wicha MS . Colon cancer stem cells: implications for prevention and therapy. Trends Mol Med 2008; 14: 503–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Todaro M, Francipane MG, Medema JP, Stassi G . Colon cancer stem cells: promise of targeted therapy. Gastroenterology 2010; 138: 2151–2162.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Q, Zhang W, Ning Z, Zhuang X, Lu H, Liang J et al. A novel oncolytic herpes simplex virus type 2 has potent anti-tumor activity. PLoS One 2014; 9: e93103.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

echnical assistance from Jianwu Jiang and Xiaolan Li is appreciated. This work was supported by the National Basic Research Program of China (973 Program, Grant No. 2012CB917100), National Natural Science Foundation of China (Grant No. 81172160) and 863 Program of China (863 Program, Grant No. 2012AA02A407).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Q Yan or B Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Peng, T., Li, J. et al. Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models. Gene Ther 23, 450–459 (2016). https://doi.org/10.1038/gt.2016.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2016.15

This article is cited by

Search

Quick links