Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cell-based gene therapy against HIV

Abstract

The ability to integrate inside the host genome lays a strong foundation for HIV to play hide and seek with the host’s immune surveillance mechanisms. Present anti-viral therapies, although successful in suppressing the virus to a certain level, fail to wipe it out completely. However, recent approaches in modifying stem cells and enabling them to give rise to potent/resistant T-cells against HIV holds immense hope for eradication of the virus from the host. In this review, we will briefly discuss previous landmark studies on engineering stem cells or T-cells that have been explored for therapeutic efficacy against HIV. We will also analyze potential benefits and pitfalls of some studies done recently and will share our opinion on emerging trends.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Engelman A, Cherepanov P . The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol 2012; 10: 279–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Poeschla EM, Wong-Staal F, Looney DJ . Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat Med 1998; 4: 354–357.

    Article  CAS  PubMed  Google Scholar 

  3. Arts EJ, Hazuda DJ . HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med 2012; 2: a007161.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Deeks SG . HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med 2011; 62: 141–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997; 278: 1295–1300.

    Article  CAS  PubMed  Google Scholar 

  6. Rappuoli R, Aderem A . A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature 2011; 473: 463–469.

    Article  CAS  PubMed  Google Scholar 

  7. Kitchen SG, Shimizu S, An DS . Stem cell-based anti-HIV gene therapy. Virology 2011; 411: 260–272.

    Article  CAS  PubMed  Google Scholar 

  8. Miller CL, Eaves CJ . Expansion in vitro of adult murine hematopoietic stem cells with transplantable lympho-myeloid reconstituting ability. Proc Natl Acad Sci USA 1997; 94: 13648–13653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  10. Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S . Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 2005; 33: 5978–5990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Denton PW, Garcia JV . Humanized mouse models of HIV infection. AIDS Rev 2011; 13: 135–148.

    PubMed  PubMed Central  Google Scholar 

  12. Rossi JJ, June CH, Kohn DB . Genetic therapies against HIV. Nat Biotechnol 2007; 25: 1444–1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baltimore D . Gene therapy. Intracellular immunization. Nature 1988; 335: 395–396.

    Article  CAS  PubMed  Google Scholar 

  14. Sullenger BA, Gallardo HF, Ungers GE, Gilboa E . Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 1990; 63: 601–608.

    Article  CAS  PubMed  Google Scholar 

  15. Graham GJ, Maio JJ . RNA transcripts of the human immunodeficiency virus transactivation response element can inhibit action of the viral transactivator. Proc Natl Acad Sci USA 1990; 87: 5817–5821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bevec D, Dobrovnik M, Hauber J, Bohnlein E . Inhibition of human immunodeficiency virus type 1 replication in human T cells by retroviral-mediated gene transfer of a dominant-negative Rev trans-activator. Proc Natl Acad Sci USA 1992; 89: 9870–9874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smythe JA, Sun D, Thomson M, Markham PD, Reitz MS Jr, Gallo RC et al. A Rev-inducible mutant gag gene stably transferred into T lymphocytes: an approach to gene therapy against human immunodeficiency virus type 1 infection. Proc Natl Acad Sci USA 1994; 91: 3657–3661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lisziewicz J, Sun D, Smythe J, Lusso P, Lori F, Louie A et al. Inhibition of human immunodeficiency virus type 1 replication by regulated expression of a polymeric Tat activation response RNA decoy as a strategy for gene therapy in AIDS. Proc Natl Acad Sci USA 1993; 90: 8000–8004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu M, Leavitt MC, Maruyama M, Yamada O, Young D, Ho AD et al. Intracellular immunization of human fetal cord blood stem/progenitor cells with a ribozyme against human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1995; 92: 699–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bonyhadi ML, Moss K, Voytovich A, Auten J, Kalfoglou C, Plavec I et al. RevM10-expressing T cells derived in vivo from transduced human hematopoietic stem-progenitor cells inhibit human immunodeficiency virus replication. J Virol 1997; 71: 4707–4716.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bai J, Gorantla S, Banda N, Cagnon L, Rossi J, Akkina R . Characterization of anti-CCR5 ribozyme-transduced CD34+ hematopoietic progenitor cells in vitro and in a SCID-hu mouse model in vivo. Mol Ther 2000; 1: 244–254.

    Article  CAS  PubMed  Google Scholar 

  22. Banerjea A, Li MJ, Remling L, Rossi J, Akkina R . Lentiviral transduction of Tar Decoy and CCR5 ribozyme into CD34+ progenitor cells and derivation of HIV-1 resistant T cells and macrophages. AIDS Res Ther 2004; 1: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kohn DB, Bauer G, Rice CR, Rothschild JC, Carbonaro DA, Valdez P et al. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood 1999; 94: 368–371.

    CAS  PubMed  Google Scholar 

  24. Li MJ, Kim J, Li S, Zaia J, Yee JK, Anderson J et al. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther 2005; 12: 900–909.

    Article  CAS  PubMed  Google Scholar 

  25. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86: 367–377.

    Article  CAS  PubMed  Google Scholar 

  26. de Roda Husman AM, Koot M, Cornelissen M, Keet IP, Brouwer M, Broersen SM et al. Association between CCR5 genotype and the clinical course of HIV-1 infection. Ann Intern Med 1997; 127: 882–890.

    Article  CAS  PubMed  Google Scholar 

  27. Feng Y, Leavitt M, Tritz R, Duarte E, Kang D, Mamounas M et al. Inhibition of CCR5-dependent HIV-1 infection by hairpin ribozyme gene therapy against CC-chemokine receptor 5. Virology 2000; 276: 271–278.

    Article  CAS  PubMed  Google Scholar 

  28. Schroers R, Davis CM, Wagner HJ, Chen SY . Lentiviral transduction of human T-lymphocytes with a RANTES intrakine inhibits human immunodeficiency virus type 1 infection. Gene Therapy 2002; 9: 889–897.

    Article  CAS  PubMed  Google Scholar 

  29. Swan CH, Buhler B, Steinberger P, Tschan MP, Barbas CF 3rd, Torbett BE . T-cell protection and enrichment through lentiviral CCR5 intrabody gene delivery. Gene Therapy 2006; 13: 1480–1492.

    Article  CAS  PubMed  Google Scholar 

  30. Qin XF, An DS, Chen IS, Baltimore D . Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA 2003; 100: 183–188.

    Article  CAS  PubMed  Google Scholar 

  31. An DS, Donahue RE, Kamata M, Poon B, Metzger M, Mao SH et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc Natl Acad Sci USA 2007; 104: 13110–13115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009; 360: 692–698.

    Article  PubMed  Google Scholar 

  33. Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood 2011; 117: 2791–2799.

    Article  CAS  PubMed  Google Scholar 

  34. Kordelas L, Verheyen J, Beelen DW, Horn PA, Heinold A, Kaiser R et al. Shift of HIV tropism in stem-cell transplantation with CCR5 Delta32 mutation. N Engl J Med 2014; 371: 880–882.

    Article  PubMed  Google Scholar 

  35. Anderson J, Akkina R . HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Res Ther 2005; 2: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008; 26: 808–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 2010; 28: 839–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yuan J, Wang J, Crain K, Fearns C, Kim KA, Hua KL et al. Zinc-finger nuclease editing of human cxcr4 promotes HIV-1 CD4(+) T cell resistance and enrichment. Mol Ther 2012; 20: 849–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370: 901–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T . A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 2011; 39: 9283–9293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ebina H, Misawa N, Kanemura Y, Koyanagi Y . Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 2013; 3: 2510.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 2014; 24: 132–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, Qi Z et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection. Proc Natl Acad Sci USA 2014; 111: 9591–9596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu W, Lei R, Le Duff Y, Li J, Guo F, Wainberg MA et al. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 2015; 12: 22.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liao HK, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 2015; 6: 6413.

    Article  CAS  PubMed  Google Scholar 

  46. Mandal PK, Ferreira LM, Collins R, Meissner TB, Boutwell CL, Friesen M et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell 2014; 15: 643–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kitchen SG, Levin BR, Bristol G, Rezek V, Kim S, Aguilera-Sandoval C et al. In vivo suppression of HIV by antigen specific T cells derived from engineered hematopoietic stem cells. PLoS Pathog 2012; 8: e1002649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cooper LJ, Kalos M, Lewinsohn DA, Riddell SR, Greenberg PD . Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cell receptor genes. J Virol 2000; 74: 8207–8212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Varela-Rohena A, Molloy PE, Dunn SM, Li Y, Suhoski MM, Carroll RG et al. Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nat Med 2008; 14: 1390–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mitsuyasu RT, Anton PA, Deeks SG, Scadden DT, Connick E, Downs MT et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood 2000; 96: 785–793.

    CAS  PubMed  Google Scholar 

  51. Deeks SG, Wagner B, Anton PA, Mitsuyasu RT, Scadden DT, Huang C et al. A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther 2002; 5: 788–797.

    Article  CAS  PubMed  Google Scholar 

  52. Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G, Hege KM et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med 2012; 4: 132ra53.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ni Z, Knorr DA, Bendzick L, Allred J, Kaufman DS . Expression of chimeric receptor CD4zeta by natural killer cells derived from human pluripotent stem cells improves in vitro activity but does not enhance suppression of HIV infection in vivo. Stem Cells 2014; 32: 1021–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Klase Z, Houzet L, Jeang KT . MicroRNAs and HIV-1: complex interactions. J Biol Chem 2012; 287: 40884–40890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ringpis GE, Shimizu S, Arokium H, Camba-Colon J, Carroll MV, Cortado R et al. Engineering HIV-1-resistant T-cells from short-hairpin RNA-expressing hematopoietic stem/progenitor cells in humanized BLT mice. PloS One 2012; 7: e53492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tebas P, Stein D, Binder-Scholl G, Mukherjee R, Brady T, Rebello T et al. Antiviral effects of autologous CD4 T cells genetically modified with a conditionally replicating lentiviral vector expressing long antisense to HIV. Blood 2013; 121: 1524–1533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schleifman EB, Bindra R, Leif J, del Campo J, Rogers FA, Uchil P et al. Targeted disruption of the CCR5 gene in human hematopoietic stem cells stimulated by peptide nucleic acids. Chem Biol 2011; 18: 1189–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Krosl J, Austin P, Beslu N, Kroon E, Humphries RK, Sauvageau G . In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med 2003; 9: 1428–1432.

    Article  CAS  PubMed  Google Scholar 

  59. Himburg HA, Harris JR, Ito T, Daher P, Russell JL, Quarmyne M et al. Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche. Cell Rep 2012; 2: 964–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 2010; 329: 1345–1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Savkovic B, Nichols J, Birkett D, Applegate T, Ledger S, Symonds G et al. A quantitative comparison of anti-HIV gene therapy delivered to hematopoietic stem cells versus CD4+ T cells. PLoS Comput Biol 2014; 10: e1003681.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D . Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 2012; 481: 81–84.

    Article  CAS  Google Scholar 

  63. Balazs AB, Ouyang Y, Hong CM, Chen J, Nguyen SM, Rao DS et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat Med 2014; 20: 296–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge CSIR for funding through the project BSC0123. We also acknowledge Bhawani Bakshi, Shivani Gupta, Aksheev Bhambri, Monisha KM and Arijit Nandy for proofreading the manuscript. RD also acknowledges CSIR-SRF for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Pillai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, R., Pillai, B. Cell-based gene therapy against HIV. Gene Ther 22, 851–855 (2015). https://doi.org/10.1038/gt.2015.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.58

Search

Quick links