Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interactome analysis of gene expression profile reveals potential novel key transcriptional regulators of skin pathology in vitiligo

Subjects

Abstract

Selective destruction of epidermal melanocytes is central to vitiligo (VL), a common acquired, autoimmune depigmentory disorder of the skin. Like other autoimmune diseases, the pathogenesis of VL is obscure and both multifactorial and polygenic. The prevailing theory is that VL may be part of an autoimmune diathesis. To evaluate mechanisms underlying disease development and progression, we studied genome-wide gene expression from lesional and non-lesional skin of patients with non-segmental VL. Unbiased clustering and principal components analyses reveals a 'lesional pathology'-based signature. Pathway-based analyses of the differentially expressed genes underscore processes such as melanocyte development and cell cycle as central drivers of the disease state. Interactome analysis identifies several key transcriptional regulators potentially affecting disease pathogenesis both within and 'hidden' from the data set. Finally, two genes within six identified transcriptional 'hot spots' coincide with previous VL-associated genetic elements. The remaining genes in the 'hot spots' offer an additional set of potential disease-linked loci that may help to guide future studies aimed at identifying disease risk genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Boissy RE, Nordlund JJ . Vitiligo: current medical and scientific understanding. G Ital Dermatol Venereol 2011; 146: 69–75.

    CAS  PubMed  Google Scholar 

  2. Nordlund JJ . The epidemiology and genetics of vitiligo. Clin Dermatol 1997; 15: 875–878.

    CAS  PubMed  Google Scholar 

  3. Wolff K, Goldsmith LA, Katz SI, Gilchrest BA, Paller AS, Leffell DJ . Fitzpatrick's Dermatol General Medicine, 7th edn, vol. 1. Mac Graw Hill: New York, NY, USA, 2007: pp 616–621.

    Google Scholar 

  4. Hann SK, Park YK, Chun WH . Clinical features of vitiligo. Clin Dermatol 1997; 15: 891–897.

    CAS  PubMed  Google Scholar 

  5. Lerner AB . Vitiligo. J Invest Dermatol 1959; 32: 285–310.

    CAS  PubMed  Google Scholar 

  6. Porter J, Beuf AH, Nordlund JJ, Lerner AB . Psychological reaction to chronic skin disorders: a study of patients with vitiligo. Gen Hosp Psychiatry 1979; 1: 73–77.

    CAS  PubMed  Google Scholar 

  7. Ongenae K, Beelaert L, van Geel N, Naeyaert JM . Psychosocial effects of vitiligo. J Eur Acad Dermatol Venereol 2006; 20: 1–8.

    CAS  PubMed  Google Scholar 

  8. Porter JR, Beuf AH, Lerner AB, Nordlund JJ . The effect of vitiligo on sexual relationships. J Am Acad Dermatol 1990; 22: 221–222.

    CAS  PubMed  Google Scholar 

  9. Silverberg JI, Silverberg NB . Association between vitiligo extent and distribution and quality-of-life impairment. JAMA Dermatol 2013; 149: 159–164.

    PubMed  Google Scholar 

  10. Schallreuter KU, Bahadoran P, Picardo M, Slominski A, Elassiuty YE, Kemp EH et al. Vitiligo pathogenesis: autoimmune disease, genetic defect, excessive reactive oxygen species, calcium imbalance, or what else? Exp Dermatol 2008; 17: 139–140; discussion 141-60.

    CAS  PubMed  Google Scholar 

  11. Tarle RG, Nascimento LM, Mira MT, Castro CC . Vitiligo—part 1. An Bras Dermatol 2014; 89: 461–470.

    PubMed  PubMed Central  Google Scholar 

  12. Manga P, Kerr R, Ramsay M, Kromberg JG . Biology and genetics of oculocutaneous albinism and vitiligo—common pigmentation disorders in southern Africa. S Afr Med J 2013; 103: 984–988.

    PubMed  Google Scholar 

  13. Mahdi P, Rouzbahani M, Amali A, Rezaii Khiabanlu S, Kamali M . Audiological manifestations in vitiligo patients. Iran J Otorhinolaryngol 2012; 24: 35–40.

    PubMed  PubMed Central  Google Scholar 

  14. Bulbul Baskan E, Baykara M, Ercan I, Tunali S, Yucel A . Vitiligo and ocular findings: a study on possible associations. J Eur Acad Dermatol Venereol 2006; 20: 829–833.

    CAS  PubMed  Google Scholar 

  15. Rezaei N, Gavalas NG, Weetman AP, Kemp EH . Autoimmunity as an aetiological factor in vitiligo. J Eur Acad Dermatol Venereol 2007; 21: 865–876.

    CAS  PubMed  Google Scholar 

  16. Ongenae K, Van Geel N, Naeyaert JM . Evidence for an autoimmune pathogenesis of vitiligo. Pigment Cell Res 2003; 16: 90–100.

    PubMed  Google Scholar 

  17. Abdel-Naser MB, Kruger-Krasagakes S, Krasagakis K, Gollnick H, Abdel-Fattah A, Orfanos CE . Further evidence for involvement of both cell mediated and humoral immunity in generalized vitiligo. Pigment Cell Res 1994; 7: 1–8.

    CAS  PubMed  Google Scholar 

  18. Gregg RK, Nichols L, Chen Y, Lu B, Engelhard VH . Mechanisms of spatial and temporal development of autoimmune vitiligo in tyrosinase-specific TCR transgenic mice. J Immunol 2010; 184: 1909–1917.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA, Turka LA . A mouse model of vitiligo with focused epidermal depigmentation requires IFN-gamma for autoreactive CD8(+) T-cell accumulation in the skin. J Invest Dermatol 2012; 132: 1869–1876.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Oyarbide-Valencia K, van den Boorn JG, Denman CJ, Li M, Carlson JM, Hernandez C et al. Therapeutic implications of autoimmune vitiligo T cells. Autoimmun Rev 2006; 5: 486–492.

    PubMed  PubMed Central  Google Scholar 

  21. Steitz J, Bruck J, Lenz J, Buchs S, Tuting T . Peripheral CD8+ T cell tolerance against melanocytic self-antigens in the skin is regulated in two steps by CD4+ T cells and local inflammation: implications for the pathophysiology of vitiligo. J Invest Dermatol 2005; 124: 144–150.

    CAS  PubMed  Google Scholar 

  22. Le Poole IC, Wankowicz-Kalinska A, van den Wijngaard RM, Nickoloff BJ, Das PK . Autoimmune aspects of depigmentation in vitiligo. J. Investig Dermatol Symp Proc 2004; 9: 68–72.

    PubMed  Google Scholar 

  23. van den Wijngaard R, Wankowicz-Kalinska A, Le Poole C, Tigges B, Westerhof W, Das P . Local immune response in skin of generalized vitiligo patients. Destruction of melanocytes is associated with the prominent presence of CLA+ T cells at the perilesional site. Lab Invest 2000; 80: 1299–1309.

    CAS  PubMed  Google Scholar 

  24. van den Boorn JG, Konijnenberg D, Dellemijn TA, van der Veen JP, Bos JD, Melief CJ et al. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol 2009; 129: 2220–2232.

    CAS  PubMed  Google Scholar 

  25. Harning R, Cui J, Bystryn JC . Relation between the incidence and level of pigment cell antibodies and disease activity in vitiligo. J Invest Dermatol 1991; 97: 1078–1080.

    CAS  PubMed  Google Scholar 

  26. Kemp EH, Waterman EA, Weetman AP . Autoimmune aspects of vitiligo. Autoimmunity 2001; 34: 65–77.

    CAS  PubMed  Google Scholar 

  27. Naughton GK, Eisinger M, Bystryn JC . Antibodies to normal human melanocytes in vitiligo. J Exp Med 1983; 158: 246–251.

    CAS  PubMed  Google Scholar 

  28. Naughton GK, Eisinger M, Bystryn JC . Detection of antibodies to melanocytes in vitiligo by specific immunoprecipitation. J Invest Dermatol 1983; 81: 540–542.

    CAS  PubMed  Google Scholar 

  29. Song YH, Connor E, Li Y, Zorovich B, Balducci P, Maclaren N . The role of tyrosinase in autoimmune vitiligo. Lancet 1994; 344: 1049–1052.

    CAS  PubMed  Google Scholar 

  30. Boniface K, Rezvani HR, Seneschal J, Taieb A . Comment: The mystery of melanocyte demise in vitiligo. Exp Dermatol 2015; 24: 260–261.

    PubMed  Google Scholar 

  31. Arunachalam M, Colucci R, Berti S, Kline JA, Lotti T, Lotti F et al. Autoimmune signals in non-segmental vitiligo patients are associated with distinct clinical parameters and toxic exposures. J Eur Acad Dermatol Venereol 2013; 27: 961–966.

    CAS  PubMed  Google Scholar 

  32. Mandelcorn-Monson RL, Shear NH, Yau E, Sambhara S, Barber BH, Spaner D et al. Cytotoxic T lymphocyte reactivity to gp100, MelanA/MART-1, and tyrosinase, in HLA-A2-positive vitiligo patients. J Invest Dermatol 2003; 121: 550–556.

    CAS  PubMed  Google Scholar 

  33. Colucci R, Lotti F, Dragoni F, Arunachalam M, Lotti T, Benvenga S et al. High prevalence of circulating autoantibodies against thyroid hormones in vitiligo and correlation with clinical and historical parameters of patients. Br J Dermatol 2014; 171: 786–798.

    CAS  PubMed  Google Scholar 

  34. Yang L, Wei Y, Sun Y, Shi W, Yang J, Zhu L et al. Interferon-gamma inhibits melanogenesis and induces apoptosis in melanocytes: a pivotal role of CD8+ cytotoxic T lymphocytes in vitiligo. Acta Derm Venereol 2015; 95: 664–670.

    CAS  PubMed  Google Scholar 

  35. Rashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, Su MW et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med 2014; 6: 223ra23.

    PubMed  PubMed Central  Google Scholar 

  36. Tembhre MK, Sharma VK, Sharma A, Chattopadhyay P, Gupta S . T helper and regulatory T cell cytokine profile in active, stable and narrow band ultraviolet B treated generalized vitiligo. Clin Chim Acta 2013; 424: 27–32.

    CAS  PubMed  Google Scholar 

  37. Tembhre MK, Parihar AS, Sharma A, Gupta S, Chattopadhyay P, Sharma VK . Participation of T cell immunoglobulin and mucin domain-3 (TIM-3) and its ligand (galectin-9) in the pathogenesis of active generalized vitiligo. Immunol Res 2015; 62: 23–34.

    CAS  PubMed  Google Scholar 

  38. Khan R, Gupta S, Sharma A . Circulatory levels of T-cell cytokines (interleukin [IL]-2, IL-4, IL-17, and transforming growth factor-beta) in patients with vitiligo. J Am Acad Dermatol 2012; 66: 510–511.

    PubMed  Google Scholar 

  39. Bassiouny DA, Shaker O . Role of interleukin-17 in the pathogenesis of vitiligo. Clin Exp Dermatol 2011; 36: 292–297.

    CAS  PubMed  Google Scholar 

  40. Nascimento LM, Silva de Castro CC, Fava VM, Iani Werneck R, Mira MT . Genetic and biochemical evidence implicates the butyrylcholinesterase gene BCHE in vitiligo pathogenesis. Exp Dermatol 2015, e-pub ahead of print 17 July 2015; doi:10.1111/exd.12810.

    PubMed  Google Scholar 

  41. Al-Shobaili HA . Update on the genetics characterization of vitiligo. Int J Health Sci (Qassim) 2011; 5: 167–179.

    Google Scholar 

  42. Ren Y, Yang S, Xu S, Gao M, Huang W, Gao T et al. Genetic variation of promoter sequence modulates XBP1 expression and genetic risk for vitiligo. PLoS Genet 2009; 5: e1000523.

    PubMed  PubMed Central  Google Scholar 

  43. Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 2007; 356: 1216–1225.

    CAS  PubMed  Google Scholar 

  44. Dey-Rao R, Smith JR, Chow S, Sinha AA . Differential gene expression analysis in CCLE lesions provides new insights regarding the genetics basis of skin vs systemic disease. Genomics 2014; 104: 144–155.

    CAS  PubMed  Google Scholar 

  45. Dey-Rao R, Sinha AA . Genome-wide transcriptional profiling of chronic cutaneous lupus erythematosus (CCLE) peripheral blood identifies systemic alterations relevant to the skin manifestation. Genomics 2015; 105: 90–100.

    CAS  PubMed  Google Scholar 

  46. Dey-Rao R, Seiffert-Sinha K, Sinha AA . Genome-wide expression analysis suggests unique disease-promoting and disease-preventing signatures in Pemphigus vulgaris. Genes Immun 2013; 14: 487–499.

    CAS  PubMed  Google Scholar 

  47. Yu R, Broady R, Huang Y, Wang Y, Yu J, Gao M et al. Transcriptome analysis reveals markers of aberrantly activated innate immunity in vitiligo lesional and non-lesional skin. PLoS One 2012; 7: e51040.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ito T, Chiba T, Yoshida M . Exploring the protein interactome using comprehensive two-hybrid projects. Trends Biotechnol 2001; 19: S23–S27.

    CAS  PubMed  Google Scholar 

  49. Wachi S, Yoneda K, Wu R . Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 2005; 21: 4205–4208.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang Y, Huang G, Yan X, Qing Z . Clinical analysis of thyroglobulin antibody and thyroid peroxidase antibody and their association with vitiligo. Indian J Dermatol 2014; 59: 357–360.

    PubMed  PubMed Central  Google Scholar 

  51. Afsar FS, Isleten F . Prevalence of thyroid function test abnormalities and thyroid autoantibodies in children with vitiligo. Indian J Endocrinol Metab 2013; 17: 1096–1099.

    PubMed  PubMed Central  Google Scholar 

  52. Khalil A, Zaidman I, Bergman R, Elhasid R, Ben-Arush MW . Autoimmune complications after hematopoietic stem cell transplantation in children with nonmalignant disorders. ScientificWorldJournal 2014; 2014: 581657.

    PubMed  PubMed Central  Google Scholar 

  53. Kim YG, Lee MW, Shin JM, Jeong MG, Ko JY . Colocalization of nonsegmental vitiligo and extragenital lichen sclerosus in a 45-year-old female patient with Hashimoto's thyroiditis. J Dermatol 2015; 42: 333–4.

    PubMed  Google Scholar 

  54. Zhong Y, Kinio A, Saleh M . Functions of NOD-like receptors in human diseases. Front Immunol 2013; 4: 333.

    PubMed  PubMed Central  Google Scholar 

  55. Orlow SJ . Melanosomes are specialized members of the lysosomal lineage of organelles. J Invest Dermatol 1995; 105: 3–7.

    CAS  PubMed  Google Scholar 

  56. Delevoye C, Hurbain I, Tenza D, Sibarita JB, Uzan-Gafsou S, Ohno H et al. AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis. J Cell Biol 2009; 187: 247–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ingordo V, Cazzaniga S, Raone B, Digiuseppe MD, Musumeci ML, Fai D et al. Circulating autoantibodies and autoimmune comorbidities in vitiligo patients: a multicenter Italian study. Dermatology 2014; 228: 240–249.

    CAS  PubMed  Google Scholar 

  58. Colucci R, Dragoni F, Moretti S . Oxidative stress and immune system in vitiligo and thyroid diseases. Oxid Med Cell Longev 2015; 2015: 7 63192.

    Google Scholar 

  59. Diaz-Angulo S, Lopez-Hoyos M, Munoz-Cacho P, Lopez-Escobar M, Gonzalez-Lopez MA . High prevalence of thyroid autoimmunity in patients with alopecia areata and vitiligo: a controlled study. Australas J Dermatol 2015; 56: 142–143.

    PubMed  Google Scholar 

  60. Zhou H, Zhao J, Tang X, Zhang X, He D . Autoimmune hyperthyroidism, vitiligo, halo nevus and lupus. Am J Med Sci 2015, e-pub ahead of print 4 July 2015; doi:10.1097/MAJ.0000000000000526.

  61. Huang Y, Yi X, Jian Z, Wei C, Li S, Cai C et al. A single-nucleotide polymorphism of miR-196a-2 and vitiligo: an association study and functional analysis in a Han Chinese population. Pigment Cell Melanoma Res 2013; 26: 338–347.

    CAS  PubMed  Google Scholar 

  62. Picardo M, Taieb A Vitiligo. Springer-Verlag: Heidelberg, 2010.

    Google Scholar 

  63. Kroll TM, Bommiasamy H, Boissy RE, Hernandez C, Nickoloff BJ, Mestril R et al. 4-Tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J Invest Dermatol 2005; 124: 798–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Shroads AL, Coats BS, McDonough CW, Langaee T, Stacpoole PW . Haplotype variations in glutathione transferase zeta 1 influence the kinetics and dynamics of chronic dichloroacetate in children. J Clin Pharmacol 2015; 55: 50–55.

    CAS  PubMed  Google Scholar 

  65. Wang S, Liu D, Ning W, Xu A . Cytosolic dsDNA triggers apoptosis and pro-inflammatory cytokine production in normal human melanocytes. Exp Dermatol 2015; 24: 298–300.

    PubMed  Google Scholar 

  66. Lee AY . Role of keratinocytes in the development of vitiligo. Ann Dermatol 2012; 24: 115–125.

    PubMed  PubMed Central  Google Scholar 

  67. Yu N, Zhang S, Sun T, Kang K, Guan M, Xiang L . Double-stranded RNA induces melanocyte death via activation of Toll-like receptor 3. Exp Dermatol 2011; 20: 134–139.

    CAS  PubMed  Google Scholar 

  68. Coda AB, Sinha AA . Integration of genome-wide transcriptional and genetic profiles provides insights into disease development and clinical heterogeneity in alopecia areata. Genomics 2011; 98: 431–439.

    CAS  PubMed  Google Scholar 

  69. Manga P, Sheyn D, Yang F, Sarangarajan R, Boissy RE . A role for tyrosinase-related protein 1 in 4-tert-butylphenol-induced toxicity in melanocytes: implications for vitiligo. Am J Pathol 2006; 169: 1652–1662.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet 2012; 44: 676–680.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen JP, Li HP, Jin SH, Zhang JT, Li J . [Detection of serum autoantibodies to melanocyte and correlation between melanoma antigen recognized by T-cells and vitiligo in children]. Nan Fang Yi Ke Da Xue Xue Bao 2009; 29: 2107–2108, 2111.

    PubMed  Google Scholar 

  72. Silva de Castro CC, do Nascimento LM, Walker G, Werneck RI, Nogoceke E, Mira MT . Genetic variants of the DDR1 gene are associated with vitiligo in two independent Brazilian population samples. J Invest Dermatol 2010; 130: 1813–1818.

    CAS  PubMed  Google Scholar 

  73. Schallreuter KU, Elwary SM, Gibbons NC, Rokos H, Wood JM . Activation/deactivation of acetylcholinesterase by H2O2: more evidence for oxidative stress in vitiligo. Biochem Biophys Res Commun 2004; 315: 502–508.

    CAS  PubMed  Google Scholar 

  74. Tu CX, Gu JS, Lin XR . Increased interleukin-6 and granulocyte-macrophage colony stimulating factor levels in the sera of patients with non-segmental vitiligo. J Dermatol Sci 2003; 31: 73–78.

    CAS  PubMed  Google Scholar 

  75. Spencer JD, Gibbons NC, Bohm M, Schallreuter KU . The Ca2+-binding capacity of epidermal furin is disrupted by H2O2-mediated oxidation in vitiligo. Endocrinology 2008; 149: 1638–1645.

    CAS  PubMed  Google Scholar 

  76. Na GY, Lee KH, Kim MK, Lee SJ, Kim DW, Kim JC . Polymorphisms in the melanocortin-1 receptor (MC1R) and agouti signaling protein (ASIP) genes in Korean vitiligo patients. Pigment Cell Res 2003; 16: 383–387.

    CAS  PubMed  Google Scholar 

  77. Gottumukkala RV, Waterman EA, Herd LM, Gawkrodger DJ, Watson PF, Weetman AP et al. Autoantibodies in vitiligo patients recognize multiple domains of the melanin-concentrating hormone receptor. J Invest Dermatol 2003; 121: 765–770.

    CAS  PubMed  Google Scholar 

  78. Spencer JD, Gibbons NC, Rokos H, Peters EM, Wood JM, Schallreuter KU . Oxidative stress via hydrogen peroxide affects proopiomelanocortin peptides directly in the epidermis of patients with vitiligo. J Invest Dermatol 2007; 127: 411–420.

    CAS  PubMed  Google Scholar 

  79. Xia Q, Zhou WM, Liang YH, Ge HS, Liu HS, Wang JY et al. MHC haplotypic association in Chinese Han patients with vitiligo. J Eur Acad Dermatol Venereol 2006; 20: 941–946.

    CAS  PubMed  Google Scholar 

  80. Casp CB, She JX, McCormack WT . Genes of the LMP/TAP cluster are associated with the human autoimmune disease vitiligo. Genes Immun 2003; 4: 492–499.

    CAS  PubMed  Google Scholar 

  81. Li M, Sun D, Li C, Zhang Z, Gao L, Li K et al. Functional polymorphisms of the FAS gene associated with risk of vitiligo in Chinese populations: a case-control analysis. J Invest Dermatol 2008; 128: 2820–2824.

    CAS  PubMed  Google Scholar 

  82. Aydingoz IE, Kanmaz-Ozer M, Gedikbasi A, Vural P, Dogru-Abbasoglu S, Uysal M . The combination of tumour necrosis factor-alpha -308 A and interleukin-10 -1082G gene polymorphisms and increased serum levels of related cytokines: susceptibility to vitiligo. Clin Exp Dermatol 2015; 40: 71–77.

    CAS  PubMed  Google Scholar 

  83. Abanmi A, Al Harthi F, Zouman A, Kudwah A, Jamal MA, Arfin M et al. Association of interleukin-10 gene promoter polymorphisms in Saudi patients with vitiligo. Dis Markers 2008; 24: 51–57.

    CAS  PubMed  Google Scholar 

  84. Abanmi A, Al Harthi F, Al Baqami R, Al Assaf S, Zouman A, Arfin M et al. Association of HLA loci alleles and antigens in Saudi patients with vitiligo. Arch Dermatol Res 2006; 298: 347–352.

    CAS  PubMed  Google Scholar 

  85. Tursen U, Kaya TI, Erdal ME, Derici E, Gunduz O, Ikizoglu G . Association between catechol-O-methyltransferase polymorphism and vitiligo. Arch Dermatol Res 2002; 294: 143–146.

    CAS  PubMed  Google Scholar 

  86. Schallreuter KU, Rubsam K, Gibbons NC, Maitland DJ, Chavan B, Zothner C et al. Methionine sulfoxide reductases A and B are deactivated by hydrogen peroxide (H2O2) in the epidermis of patients with vitiligo. J Invest Dermatol 2008; 128: 808–815.

    CAS  PubMed  Google Scholar 

  87. Spritz RA, Gowan K, Bennett DC, Fain PR . Novel vitiligo susceptibility loci on chromosomes 7 (AIS2) and 8 (AIS3), confirmation of SLEV1 on chromosome 17, and their roles in an autoimmune diathesis. Am J Hum Genet 2004; 74: 188–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dwivedi M, Laddha NC, Shajil EM, Shah BJ, Begum R . The ACE gene I/D polymorphism is not associated with generalized vitiligo susceptibility in Gujarat population. Pigment Cell Melanoma Res 2008; 21: 407–408.

    CAS  PubMed  Google Scholar 

  89. Song GG, Bae SC, Kim JH, Lee YH . The angiotensin-converting enzyme insertion/deletion polymorphism and susceptibility to rheumatoid arthritis, vitiligo and psoriasis: a meta-analysis. J Renin-Angiotensin-Aldosterone Syst 2013; 16: 195–202.

    PubMed  Google Scholar 

  90. Namian AM, Shahbaz S, Salmanpoor R, Namazi MR, Dehghani F, Kamali-Sarvestani E . Association of interferon-gamma and tumor necrosis factor alpha polymorphisms with susceptibility to vitiligo in Iranian patients. Arch Dermatol Res 2009; 301: 21–25.

    CAS  PubMed  Google Scholar 

  91. Em S, Laddha NC, Chatterjee S, Gani AR, Malek RA, Shah BJ et al. Association of catalase T/C exon 9 and glutathione peroxidase codon 200 polymorphisms in relation to their activities and oxidative stress with vitiligo susceptibility in Gujarat population. Pigment Cell Res 2007; 20: 405–407.

    PubMed  Google Scholar 

  92. Yasar A, Gunduz K, Onur E, Calkan M . Serum homocysteine, vitamin B12, folic acid levels and methylenetetrahydrofolate reductase (MTHFR) gene polymorphism in vitiligo. Dis Markers 2012; 33: 85–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Uhm YK, Yoon SH, Kang IJ, Chung JH, Yim SV, Lee MH . Association of glutathione S-transferase gene polymorphisms (GSTM1 and GSTT1) of vitiligo in Korean population. Life Sci 2007; 81: 223–227.

    CAS  PubMed  Google Scholar 

  94. Blomhoff A, Kemp EH, Gawkrodger DJ, Weetman AP, Husebye ES, Akselsen HE et al. CTLA4 polymorphisms are associated with vitiligo, in patients with concomitant autoimmune diseases. Pigment Cell Res 2005; 18: 55–58.

    CAS  PubMed  Google Scholar 

  95. Zhu Y, Wang S, Lin F, Li Q, Xu A . The therapeutic effects of EGCG on vitiligo. Fitoterapia 2014; 99C: 243–251.

    Google Scholar 

  96. Mosenson JA, Eby JM, Hernandez C, Le Poole IC . A central role for inducible heat-shock protein 70 in autoimmune vitiligo. Exp Dermatol 2013; 22: 566–569.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Dwivedi M, Laddha NC, Mansuri MS, Marfatia YS, Begum R . Association of NLRP1 genetic variants and mRNA overexpression with generalized vitiligo and disease activity in a Gujarat population. Br J Dermatol 2013; 169: 1114–1125.

    CAS  PubMed  Google Scholar 

  98. Spritz RA . The genetics of generalized vitiligo and associated autoimmune diseases. Pigment Cell Res 2007; 20: 271–278.

    CAS  PubMed  Google Scholar 

  99. Spritz RA . The genetics of generalized vitiligo. Curr Dir Autoimmun 2008; 10: 244–257.

    CAS  PubMed  Google Scholar 

  100. Spritz RA . Modern vitiligo genetics sheds new light on an ancient disease. J Dermatol 2013; 40: 310–318.

    CAS  PubMed  Google Scholar 

  101. Kingo K, Aunin E, Karelson M, Philips MA, Ratsep R, Silm H et al. Gene expression analysis of melanocortin system in vitiligo. J Dermatol Sci 2007; 48: 113–122.

    CAS  PubMed  Google Scholar 

  102. Li S, Yao W, Pan Q, Tang X, Zhao S, Wang W et al. Association analysis revealed one susceptibility locus for vitiligo with immune-related diseases in the Chinese Han population. Immunogenetics 2015; 67: 347–354.

    CAS  PubMed  Google Scholar 

  103. Tang XF, Zhang Z, Hu DY, Xu AE, Zhou HS, Sun LD et al. Association analyses identify three susceptibility Loci for vitiligo in the Chinese Han population. J Invest Dermatol 2013; 133: 403–410.

    CAS  PubMed  Google Scholar 

  104. Rahner N, Hoefler G, Hogenauer C, Lackner C, Steinke V, Sengteller M et al. Compound heterozygosity for two MSH6 mutations in a patient with early onset colorectal cancer, vitiligo and systemic lupus erythematosus. Am J Med Genet A 2008; 146A: 1314–1319.

    CAS  PubMed  Google Scholar 

  105. Nair BK . Vitiligo—a retrospect. Int J Dermatol 1978; 17: 755–757.

    CAS  PubMed  Google Scholar 

  106. Dwivedi M, Helen Kemp E, Laddha NC, Mansuri MS, Weetman AP, Begum R . Regulatory T cells in vitiligo: implications for pathogenesis and therapeutics. Autoimmun Rev 2015; 14: 49–56.

    CAS  PubMed  Google Scholar 

  107. Arend WP, Palmer G, Gabay C . IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev 2008; 223: 20–38.

    CAS  PubMed  Google Scholar 

  108. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005; 23: 479–490.

    CAS  PubMed  Google Scholar 

  109. Moulin D, Donze O, Talabot-Ayer D, Mezin F, Palmer G, Gabay C . Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells. Cytokine 2007; 40: 216–225.

    CAS  PubMed  Google Scholar 

  110. Li P, Ma H, Han D, Mou K . Interleukin-33 affects cytokine production by keratinocytes in vitiligo. Clin Exp Dermatol 2015; 40: 163–170.

    CAS  PubMed  Google Scholar 

  111. Moretti S, Spallanzani A, Amato L, Hautmann G, Gallerani I, Fabbri P . Vitiligo and epidermal microenvironment: possible involvement of keratinocyte-derived cytokines. Arch Dermatol 2002; 138: 273–274.

    PubMed  Google Scholar 

  112. Levandowski CB, Mailloux CM, Ferrara TM, Gowan K, Ben S, Jin Y et al. NLRP1 haplotypes associated with vitiligo and autoimmunity increase interleukin-1beta processing via the NLRP1 inflammasome. Proc Natl Acad Sci USA 2013; 110: 2952–2956.

    CAS  PubMed  Google Scholar 

  113. Pedra JH, Cassel SL, Sutterwala FS . Sensing pathogens and danger signals by the inflammasome. Curr Opin Immunol 2009; 21: 10–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Schroder K, Tschopp J . The inflammasomes. Cell 2010; 140: 821–832.

    CAS  Google Scholar 

  115. Yang CA, Chiang BL . Inflammasomes and human autoimmunity: a comprehensive review. J Autoimmun 2015; 61: 1–8.

    CAS  PubMed  Google Scholar 

  116. Nold-Petry CA, Lo CY, Rudloff I, Elgass KD, Li S, Gantier MP et al. IL-37 requires the receptors IL-18Ralpha and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol 2015; 16: 354–365.

    CAS  PubMed  Google Scholar 

  117. Tu CX, Jin WW, Lin M, Wang ZH, Man MQ . Levels of TGF-beta(1) in serum and culture supernatants of CD4(+)CD25 (+) T cells from patients with non-segmental vitiligo. Arch Dermatol Res 2011; 303: 685–689.

    CAS  PubMed  Google Scholar 

  118. Zhou L, Shi YL, Li K, Hamzavi I, Gao TW, Huggins RH et al. Increased circulating Th17 cells and elevated serum levels of TGF-beta and IL-21 are correlated with human non-segmental vitiligo development. Pigment Cell Melanoma Res 2015; 28: 324–329.

    CAS  PubMed  Google Scholar 

  119. Wang CQ, Cruz-Inigo AE, Fuentes-Duculan J, Moussai D, Gulati N, Sullivan-Whalen M et al. Th17 cells and activated dendritic cells are increased in vitiligo lesions. PLoS One 2011; 6: e18907.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Ando H, Niki Y, Ito M, Akiyama K, Matsui MS, Yarosh DB et al. Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. J Invest Dermatol 2012; 132: 1222–1229.

    CAS  PubMed  Google Scholar 

  121. Stenmark H . Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009; 10: 513–525.

    CAS  PubMed  Google Scholar 

  122. Chung H, Jung H, Lee JH, Oh HY, Kim OB, Han IO et al. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake. J Biol Chem 2014; 289: 21751–21759.

    PubMed  PubMed Central  Google Scholar 

  123. Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP et al. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 1998; 142: 827–835.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Otreba M, Rok J, Buszman E, Wrzesniok D . [Regulation of melanogenesis: the role of cAMP and MITF]. Postepy Hig Med Dosw (Online) 2012; 66: 33–40.

    Google Scholar 

  125. Kingo K, Aunin E, Karelson M, Ratsep R, Silm H, Vasar E et al. Expressional changes in the intracellular melanogenesis pathways and their possible role in the pathogenesis of vitiligo. J Dermatol Sci 2008; 52: 39–46.

    CAS  PubMed  Google Scholar 

  126. Slominski A, Tobin DJ, Shibahara S, Wortsman J . Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 2004; 84: 1155–1228.

    CAS  PubMed  Google Scholar 

  127. Cui J, Shen LY, Wang GC . Role of hair follicles in the repigmentation of vitiligo. J Invest Dermatol 1991; 97: 410–416.

    CAS  PubMed  Google Scholar 

  128. Yamada T, Hasegawa S, Inoue Y, Date Y, Yamamoto N, Mizutani H et al. Wnt/beta-catenin and kit signaling sequentially regulate melanocyte stem cell differentiation in UVB-induced epidermal pigmentation. J Invest Dermatol 2013; 133: 2753–2762.

    CAS  PubMed  Google Scholar 

  129. Regazzetti C, Joly F, Marty C, Rivier M, Mehul B, Reiniche P et al. Transcriptional analysis of vitiligo skins reveals the alteration of WNT pathway: a promising target for repigmenting vitiligo patients. J Invest Dermatol 2015, e-pub ahead of print 31 August 2015; doi:10.1038/jid.2015.335.

    CAS  PubMed  Google Scholar 

  130. Coda AB, Qafalijaj Hysa V, Seiffert-Sinha K, Sinha AA . Peripheral blood gene expression in alopecia areata reveals molecular pathways distinguishing heritability, disease and severity. Genes Immun 2010; 11 (7): 531–541.

    CAS  PubMed  Google Scholar 

  131. Walker A, Mesinkovska NA, Boncher J, Tamburro J, Bergfeld WF . Colocalization of vitiligo and alopecia areata presenting as poliosis. J Cutan Pathol 2015; 42: 150–154.

    PubMed  Google Scholar 

  132. Mohan GC, Silverberg JI . Association of vitiligo and alopecia areata with atopic dermatitis: a systematic review and meta-analysis. JAMA Dermatol 2015; 151: 522–528.

    PubMed  Google Scholar 

  133. Chen YT, Chen YJ, Hwang CY, Lin MW, Chen TJ, Chen CC et al. Comorbidity profiles in association with vitiligo: a nationwide population-based study in Taiwan. J Eur Acad Dermatol Venereol 2014; 29: 1362–1369.

    PubMed  Google Scholar 

  134. Larue L, Delmas V . The WNT/Beta-catenin pathway in melanoma. Front Biosci 2006; 11: 733–742.

    CAS  PubMed  Google Scholar 

  135. Bellei B, Pitisci A, Catricala C, Larue L, Picardo M . Wnt/beta-catenin signaling is stimulated by alpha-melanocyte-stimulating hormone in melanoma and melanocyte cells: implication in cell differentiation. Pigment Cell Melanoma Res 2011; 24 (2): 309–325.

    CAS  PubMed  Google Scholar 

  136. Levy C, Khaled M, Fisher DE . MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 2006; 12: 406–414.

    CAS  PubMed  Google Scholar 

  137. Eichhoff OM, Weeraratna A, Zipser MC, Denat L, Widmer DS, Xu M et al. Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching. Pigment Cell Melanoma Res 2011; 24: 631–642.

    CAS  PubMed  Google Scholar 

  138. Gauthier Y, Cario Andre M, Taieb A . A critical appraisal of vitiligo etiologic theories. Is melanocyte loss a melanocytorrhagy? Pigment Cell Res 2003; 16: 322–332.

    PubMed  Google Scholar 

  139. Huang CL, Nordlund JJ, Boissy R . Vitiligo: a manifestation of apoptosis? Am J Clin Dermatol 2002; 3: 301–308.

    CAS  PubMed  Google Scholar 

  140. Grandori C, Cowley SM, James LP, Eisenman RN . The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000; 16: 653–699.

    CAS  PubMed  Google Scholar 

  141. Aravalli RN, Talbot NC, Steer CJ . Gene expression profiling of MYC-driven tumor signatures in porcine liver stem cells by transcriptome sequencing. World J Gastroenterol 2015; 21: 2011–2029.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ramana CV, Grammatikakis N, Chernov M, Nguyen H, Goh KC, Williams BR et al. Regulation of c-myc expression by IFN-gamma through Stat1-dependent and -independent pathways. EMBO J 2000; 19: 263–272.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Ott G . Impact of MYC on malignant behavior. Hematology Am Soc Hematol Educ Program 2014; 2014: 100–106.

    PubMed  Google Scholar 

  144. Liu GY, Luo Q, Xiong B, Pan C, Yin P, Liao HF et al. Tissue array for Tp53, C-myc, CCND1 gene over-expression in different tumors. World J Gastroenterol 2008; 14: 7199–7207.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Utikal J, Leiter U, Udart M, Kaskel P, Peter RU, Krahn GM . Expression of c-myc and bcl-2 in primary and advanced cutaneous melanoma. Cancer Invest 2002; 20: 914–921.

    CAS  PubMed  Google Scholar 

  146. Shishodia S, Harikumar KB, Dass S, Ramawat KG, Aggarwal BB . The guggul for chronic diseases: ancient medicine, modern targets. Anticancer Res 2008; 28: 3647–3664.

    CAS  PubMed  Google Scholar 

  147. Dang CV . MYC on the path to cancer. Cell 2012; 149: 22–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Swindell WR, Sarkar MK, Stuart PE, Voorhees JJ, Elder JT, Johnston A et al. Psoriasis drug development and GWAS interpretation through in silico analysis of transcription factor binding sites. Clin Transl Med 2015; 4: 13.

    PubMed  PubMed Central  Google Scholar 

  149. Loganzo F Jr, Dosik JS, Zhao Y, Vidal MJ, Nanus DM, Sudol M et al. Elevated expression of protein tyrosine kinase c-Yes, but not c-Src, in human malignant melanoma. Oncogene 1993; 8: 2637–2644.

    CAS  PubMed  Google Scholar 

  150. Brautigan DL . Flicking the switches: phosphorylation of serine/threonine protein phosphatases. Semin Cancer Biol 1995; 6: 211–217.

    CAS  PubMed  Google Scholar 

  151. Deichmann M, Polychronidis M, Wacker J, Thome M, Naher H . The protein phosphatase 2 A subunit Bgamma gene is identified to be differentially expressed in malignant melanomas by subtractive suppression hybridization. Melanoma Res 2001; 11: 577–585.

    CAS  PubMed  Google Scholar 

  152. Petritsch C, Beug H, Balmain A, Oft M . TGF-beta inhibits p70 S6 kinase via protein phosphatase 2 A to induce G(1) arrest. Genes Dev 2000; 14: 3093–3101.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Tobin DJ, Swanson NN, Pittelkow MR, Peters EM, Schallreuter KU . Melanocytes are not absent in lesional skin of long duration vitiligo. J Pathol 2000; 191: 407–416.

    CAS  PubMed  Google Scholar 

  154. Hirobe T . Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res 2005; 18: 2–12.

    CAS  PubMed  Google Scholar 

  155. Sviderskaya EV, Wakeling WF, Bennett DC . A cloned, immortal line of murine melanoblasts inducible to differentiate to melanocytes. Development 1995; 121: 1547–1557.

    CAS  PubMed  Google Scholar 

  156. Richmond JM, Frisoli ML, Harris JE . Innate immune mechanisms in vitiligo: danger from within. Curr Opin Immunol 2013; 25: 676–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Chen R, Morgan AA, Dudley J, Deshpande T, Li L, Kodama K et al. FitSNPs: highly differentially expressed genes are more likely to have variants associated with disease. Genome Biol 2008; 9: R170.

    PubMed  PubMed Central  Google Scholar 

  158. Waterman EA, Kemp EH, Gawkrodger DJ, Watson PF, Weetman AP . Autoantibodies in vitiligo patients are not directed to the melanocyte differentiation antigen MelanA/MART1. Clin Exp Immunol 2002; 129: 527–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Jin Y, Hayashi M, Fain PR, Suzuki T, Fukai K, Oiso N et al. Major association of vitiligo with HLA-A*02:01 in Japanese. Pigment Cell Melanoma Res 2015; 28: 360–362.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Agarwal P, Rashighi M, Essien KI, Richmond JM, Randall L, Pazoki-Toroudi H et al. Simvastatin prevents and reverses depigmentation in a mouse model of vitiligo. J Invest Dermatol 2015; 135: 1080–1088.

    CAS  PubMed  Google Scholar 

  161. Wu Z, Irizarry RA . Preprocessing of oligonucleotide array data. Nat Biotechnol 2004; 22: 656–658; author reply 658.

    CAS  PubMed  Google Scholar 

  162. Huang, da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    CAS  Google Scholar 

  163. Huang,, Sherman BT, Tan Q, Kir J, Liu D, Bryant D et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 2007; 35: W169–W175.

    PubMed  PubMed Central  Google Scholar 

  164. Rivals I, Personnaz L, Taing L, Potier MC . Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 2007; 23: 401–407.

    CAS  PubMed  Google Scholar 

  165. Shmelkov E, Tang Z, Aifantis I, Statnikov A . Assessing quality and completeness of human transcriptional regulatory pathways on a genome-wide scale. Biol Direct 2011; 6: 15.

    PubMed  PubMed Central  Google Scholar 

  166. Bessarabova M, Ishkin A, JeBailey L, Nikolskaya T, Nikolsky Y . Knowledge-based analysis of proteomics data. BMC Bioinformatics 2012; 13: S13.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Ideker T, Ozier O, Schwikowski B, Siegel AF . Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 2002; 18: S233–S240.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank BK Sinha and M Sinha for continued guidance and support. This work was supported in part through grants to AAS from the National Vitiligo Foundation and the American Vitiligo Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R Dey-Rao or A A Sinha.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey-Rao, R., Sinha, A. Interactome analysis of gene expression profile reveals potential novel key transcriptional regulators of skin pathology in vitiligo. Genes Immun 17, 30–45 (2016). https://doi.org/10.1038/gene.2015.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2015.48

This article is cited by

Search

Quick links