Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Highlight
  • Published:

NADPH oxidase 4 represents a potential target for the treatment of osteoporosis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Baron R, Kneissel M . WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19: 179–192.

    Article  CAS  Google Scholar 

  2. Seeman E . Age- and menopause-related bone loss compromise cortical and trabecular microstructure. J Gerontol A Biol Sci Med Sci 2013; 68: 1218–1225.

    Article  Google Scholar 

  3. Cauley JA . Public health impact of osteoporosis. J Gerontol A Biol Sci Med Sci 2013; 68: 1243–1251.

    Article  Google Scholar 

  4. Goettsch C, Babelova A, Trummer O, Erben RG, Rauner M, Rammelt S et al. NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis. J Clin Invest 2013; 123: 4731–4738.

    Article  CAS  Google Scholar 

  5. Maraldi T . Natural compounds as modulators of NADPH oxidases. Oxid Med Cell Longev 2013; 2013: 271602.

    Article  Google Scholar 

  6. Schroder K, Wandzioch K, Helmcke I, Brandes RP . Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler Thromb Vasc Biol 2009; 29: 239–245.

    Article  Google Scholar 

  7. Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR . Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 1990; 85: 632–639.

    Article  CAS  Google Scholar 

  8. Hwang SY, Putney JW Jr . Calcium signaling in osteoclasts. Biochim Biophys Acta 2011; 1813: 979–983.

    Article  CAS  Google Scholar 

  9. Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS et al. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 2005; 106: 852–859.

    Article  CAS  Google Scholar 

  10. Sasaki H, Yamamoto H, Tominaga K, Masuda K, Kawai T, Teshima-Kondo S et al. NADPH oxidase-derived reactive oxygen species are essential for differentiation of a mouse macrophage cell line (RAW264.7) into osteoclasts. J Med Invest 2009; 56: 33–41.

    Article  Google Scholar 

  11. Asagiri M, Takayanagi H . The molecular understanding of osteoclast differentiation. Bone 2007; 40: 251–264.

    Article  CAS  Google Scholar 

  12. Obermayer-Pietsch BM, Bonelli CM, Walter DE, Kuhn RJ, Fahrleitner-Pammer A, Berghold A et al. Genetic predisposition for adult lactose intolerance and relation to diet, bone density, and bone fractures. J Bone Miner Res 2004; 19: 42–47.

    Article  Google Scholar 

  13. Aoyama T, Paik YH, Watanabe S, Laleu B, Gaggini F, Fioraso-Cartier L et al. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 2012; 56: 2316–2327.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Hoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoff, P., Buttgereit, F. NADPH oxidase 4 represents a potential target for the treatment of osteoporosis. Cell Mol Immunol 11, 317–319 (2014). https://doi.org/10.1038/cmi.2014.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.9

Search

Quick links