Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

SOCS3 dictates the transition of divergent time-phased events in granulocyte TNF-α signaling

Abstract

Tumor-necrosis factor-α (TNF-α)-driven nuclear factor-κB (NF-κB) activation and apoptosis are opposing pathways; the growing recognition of these conflicting roles of TNF-α is perplexing. Here, we show that inflammation and apoptosis are time-phased events following TNF-α signaling and that emergence of suppressor of cytokine signaling 3 (SOCS3) expression limits the ongoing NF-κB activation and promotes apoptosis; further, we suggest an altered view of how inflammatory diseases are initiated and sustained. In vitro, TNF-α (50 ng/ml) induced granulocyte SOCS3 protein, inhibited nuclear accumulation of the p65NF-κB subunit and enhanced apoptosis, as shown by DNA laddering, annexin V positivity, and overexpression of caspase-3 and Bax in the late phase, whereas the early phase was marked by NF-κB activation. Conversely, SOCS3 knockdown by small interfering RNA (siRNA) inhibited granulocyte apoptosis and enhanced nuclear accumulation of p65 and 5′ lipooxygenase expression in the late phase of TNF-α signaling. As apoptosis is associated with SOCS3 abundance, we suggest that these divergent TNF-α-driven events are time-phased, interconnected, opposing control mechanisms and one of the central features through which the immune system resolves pulmonary inflammation. Dysregulation may initiate mucosal inflammation, thus changing the landscape of asthma therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bittleman DB, Erger RA, Casale TB . Cytokines induce selective granulocyte chemotactic responses. Inflamm Res 1996; 45: 89–95.

    Article  CAS  Google Scholar 

  2. Lukacs NW, Strieter RM, Chensue SW, Widmer M, Kunkel SL . TNF-alpha mediates recruitment of neutrophils and eosinophils during airway inflammation. J Immunol 1995; 154: 5411–5417.

    CAS  PubMed  Google Scholar 

  3. Kriegler M, Perez C, DeFay K, Albert I, Lu SD . A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 1988; 53: 45–53.

    Article  CAS  Google Scholar 

  4. Zheng Y, Saftig P, Hartmann D, Blobel C . Evaluation of the contribution of different ADAMs to TNF-α shedding and of the function of the TNF-α ectodomain in ensuring selective stimulated shedding by the TNF-α convertase (TACE/ADAM17). J Biol Chem 2004; 279: 42898–42906.

    Article  CAS  Google Scholar 

  5. Smith RA, Baglioni C . The active form of tumour necrosis factor is a trimer. J Biol Chem 1987; 262: 6951–6954.

    CAS  PubMed  Google Scholar 

  6. Brockhaus M, Schoenfeld HJ, Schlaeger EJ, Hunziker W, Lesslauer W, Loetscher H . Identification of two types of tumor necrosis factor receptors on human cell lines by monoclonal antibodies. Proc Natl Acad Sci USA 1990; 87: 3127–3131.

    Article  CAS  Google Scholar 

  7. Erzurum SC . Inhibition of TNF-α from refractory asthma. N Eng J Med 2006; 354: 754–758.

    Article  CAS  Google Scholar 

  8. Berry MA, Hargadon B, Shelley M, Parker D, Shaw DE, Green RH et al. Evidence of a role of TNF-α in refractory asthma. N Engl J Med 2006; 354: 697–708.

    Article  CAS  Google Scholar 

  9. Berry M, Brightling C, Pavord I, Wardlaw A . TNF-α in asthma. Curr Opin Pharmacol 2007; 7: 279–282.

    Article  CAS  Google Scholar 

  10. Slungaard A, Vercellotti GM, Walker G, Nelson RD, Jacob HS . Tumor necrosis factor alpha/cachectin stimulates eosinophil oxidant production and toxicity towards human endothelium. J Exp Med 1990; 171: 2025–2041.

    Article  CAS  Google Scholar 

  11. Scheurich P, Thoma B, Ucer U, Pfizenmaier K . Immunoregulatory activity of recombinant human TNF-α: induction of TNF receptors on human T cells and TNF-α-mediated enhancement of T cell responses. J Immunol 1987; 138: 1786–1790.

    CAS  PubMed  Google Scholar 

  12. Lassalle P, Delneste Y, Gosset P, Tonnel AB, Capron A . Potential implication of endothelial cells in bronchial asthma. Int Arch Allergy Appl Immunol 1991; 94: 233–238.

    Article  CAS  Google Scholar 

  13. Walter MJ, Morton JD, Kajiwara N, Agapov E, Holtzman MJ . Viral induction of a chronic asthma phenotype and genetic segregation from the acute response. J Clin Invest 2002; 110: 165–175.

    Article  CAS  Google Scholar 

  14. Thomas PS, Yates DH, Barnes PJ . Tumor necrosis factor-alpha increases airway responsiveness and sputum neutrophilia in normal human subjects. Am J Respir Crit Care Med 1995; 152: 76–80.

    Article  CAS  Google Scholar 

  15. Franchimont D, Martens H, Hagelstein MT, Louis E, Dewe W, Chrousos GP et al. Tumor necrosis factor alpha decreases, and interleukin-10 increases, the sensitivity of human monocytes to dexamethasone: potential regulation of the glucocorticoid receptor. J Clin Endocrinol Metab 1999; 84: 2834–2839.

    CAS  PubMed  Google Scholar 

  16. Amrani Y, Panettieri RA Jr, Frossard N, Bronner C . Activation of the TNF alpha-p55 receptor induces myocyte proliferation and modulates agonist-evoked calcium transients in cultured human tracheal smooth muscle cells. Am J Respir Cell Mol Biol 1996; 15: 55–63.

    Article  CAS  Google Scholar 

  17. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G . Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993; 122: 103–111.

    Article  CAS  Google Scholar 

  18. Sullivan DE, Ferris M, Pociask D, Brody AR . Tumor necrosis factor-α induces transforming growth factor-β1 expression in lung fibroblasts through the extracellular signal-regulated kinase pathway. Am J Respir Cell Mol Biol 2005; 32: 342–349.

    Article  CAS  Google Scholar 

  19. Baldwin AS . The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 649–683.

    Article  CAS  Google Scholar 

  20. Pomerantz JL, Baltimore D . Two pathways to NFκB. Mol Cell 2002; 10: 693–695.

    Article  CAS  Google Scholar 

  21. Heissmeyer V, Krappmann D, Hatada EN, Scheidereit C . Shared pathways of IκB kinase-induced SCF TrCP-mediated ubiquitination and degradation for the NF-κB precursor p105 and IκB. Mol Cell Biol 2001; 21: 1024–1035.

    Article  CAS  Google Scholar 

  22. Baeuerle PA . IκB–NFκB structures: at the interface of inflammation control. Cell 1998; 95: 729–731.

    Article  CAS  Google Scholar 

  23. Zandi E, Karin M . Bridging the gap: composition, regulation, and physiological function of the IκB kinase complex. Mol Cell Biol 1999; 19: 4547–4551.

    Article  CAS  Google Scholar 

  24. Spinozzi F, de Benedictis D, de Benedictis FM . Apoptosis, airway inflammation and anti-asthma therapy: from immunobiology to clinical application. Pediatr Allergy Immunol 2008; 19: 287–295.

    Article  Google Scholar 

  25. Todo-Bom A, Pinto AM, Alves V, Pereira SV, Rosa MS . Apoptosis and asthma in the elderly. J Investig Allergol Clin Immunol 2007; 17: 107–112.

    CAS  PubMed  Google Scholar 

  26. Ksontini R, MacKay SL, Moldawer LL . Revisiting the role of tumor necrosis factor α and the response to surgical injury and inflammation. Arch Surg 1998; 133: 558–567.

    Article  CAS  Google Scholar 

  27. van de Geijn GJ, Gits J, Touw IP . Distinct activities of suppressor of cytokine signaling (SOCS) proteins and involvement of the SOCS box in controlling G-CSF signaling. J Leukoc Biol 2004; 76: 237–244.

    Article  CAS  Google Scholar 

  28. Shukla M, Kumar P, Mishra V, Chaudhuri BP, Munjal AK, Raisuddin S et al. Carryover of cigarette smoke effects on hematopoietic cytokines to F1 mouse litters. Mol Immunol 2011; 48: 1809–1817.

    Article  CAS  Google Scholar 

  29. Paul BN, Mishra V, Chaudhury B, Awasthi A, Das AB, Saxena U et al. Status of Stat3 in an ovalbumin-induced mouse model of asthma: analysis of the role of Socs3 and IL-6. Int Arch Allergy Immunol 2009; 148: 99–108.

    Article  CAS  Google Scholar 

  30. Turlej RK, Fievez L, Sandersen CF, Dogne S, Kirschvink N, Lekeux P et al. Enhanced survival of lung granulocytes in an animal model of asthma: evidence for a role of GM-CSF activated STAT5 signaling pathway. Thorax 2001; 56: 696–702.

    Article  CAS  Google Scholar 

  31. Cataldo D, Munaut C, Noel A, Franenne F, Bartsch P, Foidart JM et al. Matrix metalloproteinases and TIMP-1 production by peripheral blood granulocytes from COPD patients and asthmatics. Allergy 2001; 56: 145–151.

    Article  CAS  Google Scholar 

  32. Turner DA, Paszek P, Woodcock DJ, Nelson DE, Horton CA, Wang Y et al. Physiological levels of TNF-α stimulation induce stochastic dynamics of NF-κB responses in single living cells. J. Cell Sci 2010; 123: 2834–2843.

    Article  CAS  Google Scholar 

  33. Ehlting C, Lai WS, Schaper F, Brenndorfer ED, Matthes RJ, Heinrich PC et al. Regulation of suppressor of cytokine signaling 3 (SOCS3) mRNA stability by TNF-α involves activation of the MKK6/p38MAPK/MK2 cascade. J Immunol 2007; 178: 2813–2826.

    Article  CAS  Google Scholar 

  34. Bode JG, Nimmesgern A, Schmitz J, Schaper F, Schmitt M, Frisch W et al. LPS and TNFα induce SOCS3 mRNA and inhibit IL-6-induced activation of STAT3 in macrophages. FEBS Lett 1999; 463: 365–370.

    Article  CAS  Google Scholar 

  35. Zhong H, Voll RE, Ghosh S . Phosphorylation of NFκB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the co-activator CBP/p300. Mol Cell 1998; 1: 661–671.

    Article  CAS  Google Scholar 

  36. Kershaw NJ, Murphy JM, Liau NP, Varghese LN, Laktyushin A, Whitlock EL et al. SOCS3 binds specific receptor–JAK complexes to control cytokine signaling by direct kinase inhibition. Nat Struct Mol Biol 2013; 220: 469–476.

    Article  Google Scholar 

  37. Bianchi SM, Dockrell DH, Renshaw SA, Sabroe I, Whyte MK . Granulocyte apoptosis in the pathogenesis and resolution of lung disease. Clin Sci 2006; 110: 293–304.

    Article  CAS  Google Scholar 

  38. Rogers AJ, Raby BA, Lasky-Su JA, Murphy A, Lazarus R, Klanderman BJ et al. Assessing the reproducibility of asthma candidate gene associations, using genome-wide data. Am J Respir Crit Care Med 2009; 179: 1084–1090.

    Article  CAS  Google Scholar 

  39. Morlion BJ, Torwestern E, Kuhn K, Puchstein C, Furst P . Cysteinyl-leukotriene generation as a biomarker for survival in the critically ill. Crit Care Med 2000; 28: 3655–3658.

    Article  CAS  Google Scholar 

  40. Lewis RA, Austen KF, Soberman RJ . Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med 1990; 323: 645–655.

    Article  CAS  Google Scholar 

  41. Makker HK, Lau LC, Thomson HW, Binks SM, Holgate ST . The protective effect of inhaled leukotriene D4 receptor antagonist ICI 204,219 against exercise-induced asthma. Am Rev Respir Dis 1993; 147: 1413–1418.

    Article  CAS  Google Scholar 

  42. Hampton MB, Kettle AJ, Winterbourn CC . Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 1998; 92: 3007–3017.

    CAS  PubMed  Google Scholar 

  43. Borregaard N, Cowland JB . Granules of the human neutrophilic polymorphonuclear leucocytes. Blood 1997; 89: 3503–3521.

    CAS  Google Scholar 

  44. Li X, Ampleford EJ, Howard TD, Moore WC, Torgerson DG, Li H et al. Genome-wide association studies of asthma indicate opposite immunopathogenesis direction from autoimmune diseases. J Allergy Clin Immunol 2012; 130: 861–868.

    Article  CAS  Google Scholar 

  45. Le Provost F, Miyoshi K, Vilotte JL, Bierie B, Robinson GW, Hennighausen L . SOCS3 promotes apoptosis of mammary differentiated cells. Biochem Biophys Res Commun 2005; 338: 1696–1701.

    Article  CAS  Google Scholar 

  46. Zhao X, Qi R, Sun C, Xie Y . Silencing SOCS3 could inhibit TNF-α induced apoptosis in 3T3-LI and mouse pre-adipocytes. Mol Biol Rep 2012; 39: 8853–8860.

    Article  CAS  Google Scholar 

  47. Elliott MR, Ravichandran KS . Clearance of apoptotic cells: implications in health and disease. J Cell Biol 2010; 189: 1059–1070.

    Article  CAS  Google Scholar 

  48. Kankaanranta H, Lindsay MA, Giembycz MA, Zhang X, Moilanen E, Barnes PJ . Delayed eosinophil apoptosis in asthma. J Allergy Clin Immunol 2000; 106: 77–83.

    Article  CAS  Google Scholar 

  49. Oliveri C, Polosa R . Etanercept in chronic severe asthma. Thorax 2006; 61: 640–640.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gonzalez Y, Herrera MT, Soldevila G, Garcia-Garcia L, Fabián G, Pérez-Armendariz EM et al. High glucose concentrations induce TNF-α production through the down-regulation of CD33 in primary human monocytes. BMC Immunol 2012; 13: 19.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This is CSIR-IITR communication # 3009. JKC is a recipient of a University Grant Commissions-Senior Research Fellowship. This work was supported by CSIR, New Delhi (NWP-33). JKC was involved in the experimentation and the acquisition, analysis, and interpretation of data and searched the literature and helped in the critical revision of the manuscript for important intellectual contents; BC helped in the revision of the manuscript for intellectual contents; BNP obtained funding and was involved in conceptualizing and designing the study, interpreting the data, drafting the manuscript and supervising the study overall.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhola Nath Paul.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology website.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chhabra, J., Chattopadhyay, B. & Paul, B. SOCS3 dictates the transition of divergent time-phased events in granulocyte TNF-α signaling. Cell Mol Immunol 11, 105–106 (2014). https://doi.org/10.1038/cmi.2013.36

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2013.36

Keywords

This article is cited by

Search

Quick links