Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Heat shock protein 90 inhibition by 17-DMAG lessens disease in the MRL/lpr mouse model of systemic lupus erythematosus

Abstract

Elevated expression of heat shock protein 90 (HSP90) has been found in kidneys and serum of systemic lupus erythematosus (SLE) patients and MRL/Mp-Faslpr/Faslpr (MRL/lpr) autoimmune mice. We investigated if inhibition of HSP90 would reduce disease in MRL/lpr mice. In vitro, pretreatment of mesangial cells with HSP90 inhibitor Geldanamycin prior to immune-stimulation showed reduced expression of IL-6, IL-12 and NO. In vivo, we found HSP90 expression was elevated in MRL/lpr kidneys when compared to C57BL/6 mice and MRL/lpr mice treated with HSP90 inhibitor 17-DMAG. MRL/lpr mice treated with 17-DMAG showed decreased proteinuria and reduced serum anti-dsDNA antibody production. Glomerulonephritis and glomerular IgG and C3 were not significantly affected by administration of 17-DMAG in MRL/lpr. 17-DMAG increased CD8+ T cells, reduced double-negative T cells, decreased the CD4/CD8 ratio and reduced follicular B cells. These studies suggest that HSP90 may play a role in regulating T-cell differentiation and activation and that HSP90 inhibition may reduce inflammation in lupus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Bandholtz L, Guo Y, Palmberg C, Mattsson K, Ohlsson B, High A et al. Hsp90 binds CpG oligonucleotides directly: implications for hsp90 as a missing link in CpG signaling and recognition. Cell Mol Life Sci 2003; 60: 422–429.

    Article  CAS  PubMed  Google Scholar 

  2. De Nardo D, Masendycz P, Ho S, Cross M, Fleetwood AJ, Reynolds EC et al. A central role for the Hsp90·Cdc37 molecular chaperone module in interleukin-1 receptor-associated-kinase-dependent signaling by Toll-like receptors. J Biol Chem 2005; 280: 9813–9822.

    Article  CAS  PubMed  Google Scholar 

  3. Dello Russo C, Polak PE, Mercado PR, Spagnolo A, Sharp A, Murphy P et al. The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J Neurochem 2006; 99: 1351–1362.

    Article  PubMed  CAS  Google Scholar 

  4. Dhillon VB, McCallum S, Norton P, Twomey BM, Erkeller-Yuksel F, Lydyard P et al. Differential heat shock protein overexpression and its clinical relevance in systemic lupus erythematosus. Ann Rheum Dis 1993; 52: 436–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dhillon VB, McCallum S, Latchman DS, Isenberg DA . Elevation of the 90 kDa heat-shock protein in specific subsets of systemic lupus erythematosus. Q J Med 1994; 87: 215–222.

    CAS  PubMed  Google Scholar 

  6. Latchman DS, Isenberg DA . The role of hsp90 in SLE. Autoimmunity 1994; 19: 211–218.

    Article  CAS  PubMed  Google Scholar 

  7. Faulds G, Conroy S, Madaio M, Isenberg D, Latchman D . Increased levels of antibodies to heat shock proteins with increasing age in Mrl/Mp-lpr/lpr mice. Br J Rheumatol 1995; 34: 610–615.

    Article  CAS  PubMed  Google Scholar 

  8. Ripley BJ, Isenberg DA, Latchman DS . Elevated levels of the 90 kDa heat shock protein (hsp90) in SLE correlate with levels of IL-6 and autoantibodies to hsp90. J Autoimmun 2001; 17: 341–346.

    Article  CAS  PubMed  Google Scholar 

  9. Kenderov A, Minkova V, Mihailova D, Giltiay N, Kyurkchiev S, Kehayov I et al. Lupus-specific kidney deposits of HSP90 are associated with altered IgG idiotypic interactions of anti-HSP90 autoantibodies. Clin Exp Immunol 2002; 129: 169–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu B, Dai J, Zheng H, Stoilova D, Sun S, Li Z . Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc Natl Acad Sci USA 2003; 100: 15824–15829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han JM, Kwon NH, Lee JY, Jeong SJ, Jung HJ, Kim HR et al. Identification of gp96 as a novel target for treatment of autoimmune disease in mice. PLoS ONE 2010; 5: e9792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Taldone T, Gozman A, Maharaj R, Chiosis G . Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol 2008; 8: 370–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim YS, Alarcon SV, Lee S, Lee MJ, Giaccone G, Neckers L et al. Update on Hsp90 Inhibitors in Clinical Trial. Curr Top Med Chem 2009; 9: 1479–1492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sõti C, Nagy E, Giricz Z, Vígh L, Csermely P, Ferdinandy P . Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 2005; 146: 769–780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Garnier C, Lafitte D, Tsvetkov PO, Barbier P, Leclerc-Devin J, Millot JM, et al. Binding of ATP to Heat Shock Protein 90. J Biol Chem 2002; 277: 12208–12214.

    Article  CAS  PubMed  Google Scholar 

  16. Supko JG, Hickman RL, Grever MR, Malspeis L . Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 1995; 36: 305–315.

    Article  CAS  PubMed  Google Scholar 

  17. Blagg BS, Kerr TD . Hsp90 inhibitors: small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation. Med Res Rev 2006; 26: 310–338.

    Article  CAS  PubMed  Google Scholar 

  18. Egorin M, Lagattuta T, Hamburger D, Covey J, White K, Musser S et al. Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats. Cancer Chemother Pharmacol 2002; 49: 7–19.

    Article  CAS  PubMed  Google Scholar 

  19. Egorin MJ, Zuhowski EG, Rosen DM, Sentz DL, Covey JM, Eiseman JL . Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 mice1. Cancer Chemother Pharmacol 2001; 47: 291–302.

    Article  CAS  PubMed  Google Scholar 

  20. Chatterjee A, Dimitropoulou C, Drakopanayiotakis F, Antonova G, Snead C, Cannon J et al. Heat shock protein 90 inhibitors prolong survival, attenuate inflammation, and reduce lung injury in murine sepsis. Am J Respir Crit Care Med 2007; 176: 667–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rice JW, Veal JM, Fadden RP, Barabasz AF, Partridge JM, Barta TE et al. Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum 2008; 58: 3765–3775.

    Article  CAS  PubMed  Google Scholar 

  22. Whitesell L, Lindquist SL . HSP90 and the chaperoning of cancer. Nat Rev Cancer 2005; 5: 761–762.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang H, Burrows F . Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med (Berl) 2004; 82: 488–499.

    CAS  Google Scholar 

  24. Donnelly A, Blagg BS . Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem 2008; 15: 2702–2717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yun TJ, Harning EK, Giza K, Rabah D, Li P, Arndt JW et al. EC144, a synthetic inhibitor of heat shock protein 90, blocks innate and adaptive immune responses in models of inflammation and autoimmunity. J Immunol 2011; 186: 563–575.

    Article  CAS  PubMed  Google Scholar 

  26. Suzuka H, Yoshifusa H, Nakamura Y, Miyawaki S, Shibata Y . Morphological analysis of autoimmune disease in MRL–lpr,Yaa male mice with rapidly progressive systemic lupus erythematosus. Autoimmunity 1993; 14: 275–282.

    Article  CAS  PubMed  Google Scholar 

  27. Ka SM, Cheng CW, Shui HA, Wu WM, Chang DM, Lin YC et al. Mesangial cells of lupus-prone mice are sensitive to chemokine production. Arthritis Res Ther 2007; 9: R67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Theofilopoulos AN, Koundouris S, Kono DH, Lawson BR . The role of IFN-gamma in systemic lupus erythematosus: a challenge to the Th1/Th2 paradigm in autoimmunity. Arthritis Res 2001; 3: 136–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aringer M, Smolen JS . Cytokine expression in lupus kidneys. Lupus 2005; 14: 13–18.

    Article  CAS  PubMed  Google Scholar 

  30. Reilly CM, Oates JC, Sudian J, Crosby MB, Halushka PV, Gilkeson GS . Prostaglandin J2 inhibition of mesangial cell iNOS expression. Clin Immunol 2001; 98: 337–345.

    Article  CAS  PubMed  Google Scholar 

  31. Kikawada E, Lenda DM, Kelley VR . IL-12 deficiency in MRL–Faslpr mice delays nephritis and intrarenal IFN-gamma expression, and diminishes systemic pathology. J Immunol 2003; 170: 3915–3925.

    Article  CAS  PubMed  Google Scholar 

  32. Santiago-Raber ML, Laporte C, Reininger L, Izui S . Genetic basis of murine lupus. Autoimmun Rev 2004; 3: 33–39.

    Article  CAS  PubMed  Google Scholar 

  33. Theofilopoulos AN, Kono DH . Mechanisms and genetics of autoimmunity. Ann NY Acad Sci 1998; 841: 225–235.

    Article  CAS  PubMed  Google Scholar 

  34. Singh AK . Lupus in the Fas lane? J R Coll Physicians Lond 1995; 29: 475–478.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Deng GM, Liu L, Tsokos GC . Targeted tumor necrosis factor receptor I preligand assembly domain improves skin lesions in MRL/lpr mice. Arthritis Rheum 2010; 62: 2424–2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ichinose K, Juang YT, Crispín JC, Kis-Toth K, Tsokos GC . Suppression of autoimmunity and organ pathology in lupus-prone mice upon inhibition of calcium/calmodulin-dependent protein kinase type IV. Arthritis Rheum 2011; 63: 523–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xie C, Patel R, Wu T, Zhu J, Henry T, Bhaskarabhatla M et al. PI3K/AKT/mTOR hypersignaling in autoimmune lymphoproliferative disease engendered by the epistatic interplay of Sle1b and FASlpr. Int Immunol 2007; 19: 509–522.

    Article  CAS  PubMed  Google Scholar 

  38. Sekine H, Reilly CM, Molano ID, Garnier G, Circolo A, Ruiz P et al. Complement component C3 is not required for full expression of immune complex glomerulonephritis in MRL/lpr mice. J Immunol 2001; 166: 6444–6451.

    Article  CAS  PubMed  Google Scholar 

  39. Xie C, Sharma R, Wang H, Zhou XJ, Mohan C . Strain distribution pattern of susceptibility to immune-mediated nephritis. J Immunol 2004; 172: 5047–5055.

    Article  CAS  PubMed  Google Scholar 

  40. Xie C, Zhou XJ, Liu X, Mohan C . Enhanced susceptibility to end-organ disease in the lupus-facilitating NZW mouse strain. Arthritis Rheum 2003; 48: 1080–1092.

    Article  CAS  PubMed  Google Scholar 

  41. Du Y, Fu Y, Mohan C . Experimental anti-GBM nephritis as an analytical tool for studying spontaneous lupus nephritis. Arch Immunol Ther Exp (Warsz) 2008; 56: 31–40.

    Article  CAS  Google Scholar 

  42. Divekar AA, Dubey S, Gangalum PR, Singh RR . Dicer insufficiency and microRNA-155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu. J Immunol 2011; 186: 924–930.

    Article  CAS  PubMed  Google Scholar 

  43. Yang J, Chu Y, Yang X, Gao D, Zhu L, Yang X et al. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum 2009; 60: 1472–1483.

    Article  PubMed  Google Scholar 

  44. Wieten L, Broere F, van der Zee R, Koerkamp EK, Wagenaar J, van Eden W . Cell stress induced HSP are targets of regulatory T cells: a role for HSP inducing compounds as anti-inflammatory immuno-modulators? FEBS Lett 2007; 581: 3716–3722.

    Article  CAS  PubMed  Google Scholar 

  45. Giannini A, Bijlmakers MJ . Regulation of the Src family kinase Lck by Hsp90 and ubiquitination. Mol Cell Biol 2004; 24: 5667–5676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gilkeson G, Cannon C, Oates J, Reilly C, Goldman D, Petri M . Correlation of serum measures of nitric oxide production with lupus disease activity. J Rheumatol 1999; 26: 318–324.

    CAS  PubMed  Google Scholar 

  47. Hertlein E, Wagner AJ, Jones J, Lin TS, Maddocks KJ, Towns WH 3rd et al. 17-DMAG targets the nuclear factor-kappaB family of proteins to induce apoptosis in chronic lymphocytic leukemia: clinical implications of HSP90 inhibition. Blood 2010; 116: 45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gilkeson GS, Pippen AM, Pisetsky DS . Induction of cross-reactive anti-dsDNA antibodies in preautoimmune NZB/NZW mice by immunization with bacterial DNA. J Clin Invest 1995; 95: 1398–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schwarz M, Wahl M, Resch K, Radeke HH . IFNγ induces functional chemokine receptor expression in human mesangial cells. Clin Exp Immunol 2002; 128: 285–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Teramoto K, Negoro N, Kitamoto K, Iwai T, Iwao H, Okamura M et al. Microarray analysis of glomerular gene expression in murine lupus nephritis. J Pharmacol Sci 2008; 106: 56–67.

    Article  CAS  PubMed  Google Scholar 

  51. Jeon YK, Park CH, Kim KY, Li YC, Kim J, Kim YA et al. The heat-shock protein 90 inhibitor, geldanamycin, induces apoptotic cell death in Epstein–Barr virus-positive NK/T-cell lymphoma by Akt down-regulation. J Pathol 2007; 213: 170–179.

    Article  CAS  PubMed  Google Scholar 

  52. Dey A, Cederbaum AI . Geldanamycin, an inhibitor of Hsp90, potentiates cytochrome P4502E1-mediated toxicity in HepG2 cells. J Pharmacol Exp Ther 2006; 317: 1391–1399.

    Article  CAS  PubMed  Google Scholar 

  53. Eiseman JL, Lan J, Lagattuta TF, Hamburger DR, Joseph E, Covey JM et al. Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Cancer Chemother Pharmacol 2005; 55: 21–32.

    Article  CAS  PubMed  Google Scholar 

  54. Ramanathan RK, Egorin MJ, Erlichman C, Remick SC, Ramalingam SS, Naret C et al. Phase I pharmacokinetic and pharmacodynamic study of 17-dimethylaminoethylamino-17-demethoxygeldanamycin, an inhibitor of heat-shock protein 90, in patients with advanced solid tumors. J Clin Oncol 2010; 28: 1520–1526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hollingshead M, Alley M, Burger AM, Borgel S, Pacula-Cox C, Fiebig HH et al. In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative. Cancer Chemother Pharmacol 2005; 56: 115–125.

    Article  CAS  PubMed  Google Scholar 

  56. Babchia N, Calipel A, Mouriaux F, Faussat AM, Mascarelli F . 17-AAG and 17-DMAG-induced inhibition of cell proliferation through B-Raf downregulation in WTB-Raf-expressing uveal melanoma cell lines. Invest Ophthalmol Vis Sci 2008; 49: 2348–2356.

    Article  PubMed  Google Scholar 

  57. Bishop SC, Burlison JA, Blagg BS . Hsp90: a novel target for the disruption of multiple signaling cascades. Curr Cancer Drug Targets 2007; 7: 369–388.

    Article  CAS  PubMed  Google Scholar 

  58. Vidal S, Kono DH, Theofilopoulos AN . Loci predisposing to autoimmunity in MRL–Fas lpr and C57BL/6–Faslpr mice. J Clin Invest 1998; 101: 696–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reilly CM, Mishra N, Miller JM, Joshi D, Ruiz P, Richon VM et al. Modulation of renal disease in MRL/lpr mice by suberoylanilide hydroxamic acid. J Immunol 2004; 173: 4171–4178.

    Article  CAS  PubMed  Google Scholar 

  60. Crispin JC, Kyttaris VC, Terhorst C, Tsokos GC . T cells as therapeutic targets in SLE. Nat Rev Rheumatol 2010; 6: 317–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sanz I, Lee FE . B cells as therapeutic targets in SLE. Nat Rev Rheumatol 2010; 6: 326–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. La Cava A . The busy life of regulatory T cells in systemic lupus erythematosus. Discov Med 2009; 8: 13–17.

    PubMed  Google Scholar 

  63. Staub HL, Dal Ben ERR, Bisi MC, Keiserman MW . Revisiting anti-hsp90 antibodies in systemic lupus erythematosus. Clin Exp Rheumatol 2010; 28: 928.

    PubMed  Google Scholar 

  64. Neckers L . Heat shock protein 90: the cancer chaperone. J Biosci 2007; 32: 517–530.

    Article  CAS  PubMed  Google Scholar 

  65. Neckers L . Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 2002; 8: S55–S61.

    Article  CAS  PubMed  Google Scholar 

  66. Karkoulis PK, Stravopodis DJ, Margaritis LH, Voutsinas GE . 17-Allylamino-17-demethoxygeldanamycin induces downregulation of critical Hsp90 protein clients and results in cell cycle arrest and apoptosis of human urinary bladder cancer cells. BMC Cancer 2010; 10: 481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Broemer M, Krappmann D, Scheidereit C . Requirement of Hsp90 activity for IκB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-κB activation. Oncogene 2004; 23: 5378–5386.

    Article  CAS  PubMed  Google Scholar 

  68. Liu B, Yang Y, Qiu Z, Staron M, Hong F, Li Y et al. Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nat Commun 2010; 1: 79.

    Article  PubMed  CAS  Google Scholar 

  69. Patel RK, Mohan C . PI3K/AKT signaling and systemic autoimmunity. Immunol Res 2005; 31: 47–55.

    Article  CAS  PubMed  Google Scholar 

  70. Wu T, Mohan C . The AKT axis as a therapeutic target in autoimmune diseases. Endocr Metab Immune Disord Drug Targets 2009; 9: 145–150.

    Article  CAS  PubMed  Google Scholar 

  71. Fernandez D, Perl A . mTOR signaling: a central pathway to pathogenesis in systemic lupus erythematosus? Discov Med 2010; 9: 173–178.

    PubMed  PubMed Central  Google Scholar 

  72. Liu J, Beller DI . Distinct pathways for NF-kappa B regulation are associated with aberrant macrophage IL-12 production in lupus- and diabetes-prone mouse strains. J Immunol 2003; 170: 4489–4496.

    Article  CAS  PubMed  Google Scholar 

  73. Finck BK, Chan B, Wofsy D . Interleukin 6 promotes murine lupus in NZB/NZW F1 mice. J Clin Invest 1994; 94: 585–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mihara M, Takagi N, Takeda Y, Ohsugi Y . IL-6 receptor blockage inhibits the onset of autoimmune kidney disease in NZB/W F1 mice. Clin Exp Immunol 1998; 112: 397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsai CY, Wu TH, Yu CL, Lu JY, Tsai YY . Increased excretions of beta2-microglobulin, IL-6, and IL-8 and decreased excretion of Tamm–Horsfall glycoprotein in urine of patients with active lupus nephritis. Nephron 2000; 85: 207–214.

    Article  CAS  PubMed  Google Scholar 

  76. Wax S, Piecyk M, Maritim B, Anderson P . Geldanamycin inhibits the production of inflammatory cytokines in activated macrophages by reducing the stability and translation of cytokine transcripts. Arthritis Rheum 2003; 48: 541–550.

    Article  CAS  PubMed  Google Scholar 

  77. Antonova G, Lichtenbeld H, Xia T, Chatterjee A, Dimitropoulou C, Catravas JD . Functional significance of hsp90 complexes with NOS and sGC in endothelial cells. Clin Hemorheol Microcirc 2007; 37: 19–35.

    CAS  PubMed  Google Scholar 

  78. Yoshida M, Xia Y . Heat shock protein 90 as an endogenous protein enhancer of inducible nitric-oxide synthase. J Biol Chem 2003; 278: 36953–36958.

    Article  CAS  PubMed  Google Scholar 

  79. Bae J, Mitsiades C, Tai YT, Bertheau R, Shammas M, Batchu RB et al. Phenotypic and functional effects of heat shock protein 90 inhibition on dendritic cell. J Immunol 2007; 178: 7730–7737.

    Article  CAS  PubMed  Google Scholar 

  80. Shimp SK III, Parson CB, Regna NL, Thomas A, Chafin CB, Reilly CM et al. HSP90 inhibition by 17-DMAG reduces inflammation in J774 macrophages through suppression of Akt and NF-κB pathways. Inflamm Res 2012; in press.

  81. Madrigal-Matute J, Lopez-Franco O, Blanco-Colio LM, Munoz-Garcia B, Ramos-Mozo P, Ortega L et al. Heat shock protein 90 inhibitors attenuate inflammatory responses in atherosclerosis. Cardiovasc Res 2010; 86: 330–337.

    Article  CAS  PubMed  Google Scholar 

  82. Dasu MR, Devaraj S, Park S, Jialal I . Increased Toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 2010; 33: 861–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pockley AG, Calderwood SK, Multhoff G . The atheroprotective properties of Hsp70: a role for Hsp70–endothelial interactions? Cell Stress Chaperones 2009; 14: 545–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. de Jong PR, Schadenberg AW, Jansen NJ, Prakken BJ . Hsp70 and cardiac surgery: molecular chaperone and inflammatory regulator with compartmentalized effects. Cell Stress Chaperones 2009; 14: 117–131.

    Article  PubMed  CAS  Google Scholar 

  85. Chen H, Wu Y, Zhang Y, Jin L, Luo L, Xue B et al. Hsp70 inhibits lipopolysaccharide-induced NF-kappaB activation by interacting with TRAF6 and inhibiting its ubiquitination. FEBS Lett 2006; 580: 3145–3152.

    Article  CAS  PubMed  Google Scholar 

  86. Julkunen H, Ekblom-Kullberg S, Miettinen A . Nonrenal and renal activity of systemic lupus erythematosus: a comparison of two anti-C1q and five anti-dsDNA assays and complement C3 and C4. Rheumatology Int 2011; 1–7

  87. Clynes R, Dumitru C, Ravetch JV . Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 1998; 279: 1052–1054.

    Article  CAS  PubMed  Google Scholar 

  88. Sekine H, Kinser TT, Qiao F, Martinez E, Paulling E, Ruiz P et al. The benefit of targeted and selective inhibition of the alternative complement pathway for modulating autoimmunity and renal disease in MRL/lpr mice. Arthritis Rheum 2011; 63: 1076–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sun L, Zhou L, Chen M, Zhong R, Liu J . Amelioration of systemic lupus erythematosus by withangulatin A in MRL/lpr mice. J Cell Biochem 2011; 112: 2376–2382.

    Article  CAS  PubMed  Google Scholar 

  90. Wenderfer SE, Wang H, Ke B, Wetsel RA, Braun MC . C3a receptor deficiency accelerates the onset of renal injury in the MRL/lpr mouse. Mol Immunol 2009; 46: 1397–1404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kasperkiewicz M, Muller R, Manz R, Magens M, Hammers CM, Somlai C et al. Heat-shock protein 90 inhibition in autoimmunity to type VII collagen: evidence that nonmalignant plasma cells are not therapeutic targets. Blood 2011; 117: 6135–6142.

    Article  CAS  PubMed  Google Scholar 

  92. Sobel ES, Morel L, Baert R, Mohan C, Schiffenbauer J, Wakeland EK . Genetic dissection of systemic lupus erythematosus pathogenesis: evidence for functional expression of Sle3/5 by non-T cells. J Immunol 2002; 169: 4025–4032.

    Article  CAS  PubMed  Google Scholar 

  93. Zhu J, Liu X, Xie C, Yan M, Yu Y, Sobel ES et al. T cell hyperactivity in lupus as a consequence of hyperstimulatory antigen-presenting cells. J Clin Invest 2005; 115: 1869–1878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Linker-Israeli M, Deans RJ, Wallace DJ, Prehn J, Ozeri-Chen T, Klinenberg JR . Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis. J Immunol 1991; 147: 117–123.

    CAS  PubMed  Google Scholar 

  95. Wan S, Xia C, Morel L . IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4+CD25+ T cell regulatory functions. J Immunol 2007; 178: 271–279.

    Article  CAS  PubMed  Google Scholar 

  96. de Zoeten EF, Wang L, Butler K, Beier UH, Akimova T, Sai H et al. Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3+ T-regulatory cells. Mol Cell Biol 2011; 31: 2066–2078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Madaio MP . B cells and autoantibodies in the pathogenesis of lupus nephritis. Immunol Res 1998; 17: 123–132.

    Article  CAS  PubMed  Google Scholar 

  98. Chan OT, Madaio MP, Shlomchik MJ . The central and multiple roles of B cells in lupus pathogenesis. Immunol Rev 1999; 169: 107–121.

    Article  CAS  PubMed  Google Scholar 

  99. Theofilopoulos AN, Singer PA, Kofler R, Kono DH, Duchosal MA, Balderas RS . B and T cell antigen receptor repertoires in lupus/arthritis murine models. Springer Semin Immunopathol 1989; 11: 335–368.

    Article  CAS  PubMed  Google Scholar 

  100. Grimaldi CM . Sex and systemic lupus erythematosus: the role of the sex hormones estrogen and prolactin on the regulation of autoreactive B cells. Curr Opin Rheumatol 2006; 18: 456–461.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the assistance that Melissa Makris provided with the flow cytometry. We would also like to thank the animal care staff at VMRCVM for their attention to our animals. We are appreciative of the support by the National Institute of Allergy and Infectious Diseases at the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel K Shimp III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimp, S., Chafin, C., Regna, N. et al. Heat shock protein 90 inhibition by 17-DMAG lessens disease in the MRL/lpr mouse model of systemic lupus erythematosus. Cell Mol Immunol 9, 255–266 (2012). https://doi.org/10.1038/cmi.2012.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.5

Keywords

This article is cited by

Search

Quick links