Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

MicroRNA-466l inhibits antiviral innate immune response by targeting interferon-alpha

Abstract

Effective recognition of viral infections and subsequent triggering of antiviral innate immune responses are essential for the host antiviral defense, which is tightly regulated by multiple regulators, including microRNAs (miRNAs). A previous study showed that miR-466l upregulates IL-10 expression in macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. However, the ability of miR-466l to regulate antiviral immune responses remains unknown. Here, we found that interferon-alpha (IFN-α) expression was repressed in Sendai virus (SeV)- and vesicular stomatitis virus (VSV)-infected macrophages and in dendritic cells transfected with miR-466l expression. Moreover, multiple IFN-α species can be directly targeted by miR-466l through their 3′ untranslated region (3′UTR). This study has demonstrated that miR-466l could directly target IFN-α expression to inhibit host antiviral innate immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Barbalat R, Ewald S, Mouchess M, Barton G . Nucleic acid recognition by the innate immune system. Annu Rev Immunol 2011; 29: 185–214.

    Article  CAS  PubMed  Google Scholar 

  2. Beutler B, Eidenschenk C, Crozat K, Imler J, Takeuchi O, Hoffmann J et al. Genetic analysis of resistance to viral infection. Nat Rev Immunol 2007; 7: 753–766.

    Article  CAS  PubMed  Google Scholar 

  3. Takeuchi O, Akira S . MDA5/RIG-I and virus recognition. Curr Opin Immunol 2008; 20: 17–22.

    Article  CAS  PubMed  Google Scholar 

  4. Holm C, Jensen S, Jakobsen M, Cheshenko N, Horan K, Moeller H et al. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nat Immunol 2012; 13: 737–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Negishi H, Yanai H, Nakajima A, Koshiba R, Atarashi K, Matsuda A et al. Cross-interference of RLR and TLR signaling pathways modulates antibacterial T cell respons. Nat Immunol 2012; 13: 659–666.

    Article  CAS  PubMed  Google Scholar 

  6. Lambrecht B, Hammad H . Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu Rev Immunol 2012; 30: 243–270.

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Liu S, Cao X . Highlights of the advances in basic immunology in 2011. Cell Mol Immunol 2012; 9: 197–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taniguchi T, Takaoka A . A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol 2001; 2: 378–386.

    Article  CAS  PubMed  Google Scholar 

  9. Honda K, Takaoka A, Taniguchi T . Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity 2006; 25: 349–360.

    Article  CAS  PubMed  Google Scholar 

  10. Herdy B, Jaramillo M, Svitkin Y, Rosenfeld A, Kobayashi M, Walsh D et al. Translational control of the activation of transcription factor NF-κB and production of type I interferon by phosphorylation of the translation factor eIF4E. Nat Immunol 2012; 13: 543–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cui J, Li Y, Zhu L, Liu D, Song Z, Wang H et al. NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat Immunol 2012; 13: 387–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 2012; 13: 832–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hengel H, Koszinowski U, Conzelmann K . Viruses know it all: new insights into IFN networks. Trends Immunol 2005; 26: 396–401.

    Article  CAS  PubMed  Google Scholar 

  14. Iannello A, Debbeche O, Martin E, Attalah L, Samarani S, Ahmad A . Viral strategies for evading antiviral cellular immune responses of the host. J Leukoc Biol 2006; 79: 16–35.

    Article  CAS  PubMed  Google Scholar 

  15. O'Connell R, Rao D, Chaudhuri A, Baltimore D . Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 2010; 10: 111–122.

    Article  CAS  PubMed  Google Scholar 

  16. Lindsay M . microRNAs and the immune response. Trends Immunol 2008; 29: 343–351.

    Article  CAS  PubMed  Google Scholar 

  17. Bushati N, Cohen S . MicroRNA functions. Annu Rev Cell Dev Biol 2007; 23: 175–205.

    Article  CAS  PubMed  Google Scholar 

  18. O'Connell R, Rao D, Baltimore D . microRNA regulation of inflammatory responses. Annu Rev Immunol 2012; 30: 295–312.

    Article  CAS  PubMed  Google Scholar 

  19. Wang P, Gu Y, Zhang Q, Han Y, Hou J, Lin L et al. Identification of resting and type I IFN-activated human NK cell miRNomes reveals microRNA-378 and microRNA-30e as negative regulators of NK cell cytotoxicity. J Immunol 2012; 189: 211–221.

    Article  CAS  PubMed  Google Scholar 

  20. Bai Y, Qian C, Qian L, Ma F, Hou J, Chen Y et al. Integrin CD11b negatively regulates TLR9-triggered dendritic cell cross-priming by upregulating microRNA-146a. J Immunol 2012; 188: 5293–5302.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Chen Q, Song Y, Lai L, Wang J, Yu H et al. MicroRNA-98 negatively regulates IL-10 production and endotoxin tolerance in macrophages after LPS stimulation. FEBS Lett 2011; 585: 1963–1968.

    Article  CAS  PubMed  Google Scholar 

  22. Hou J, Wang P, Lin L, Liu X, Ma F, An H et al. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 2009; 183: 2150–2158.

    Article  CAS  PubMed  Google Scholar 

  23. Wang P, Hou J, Lin L, Wang C, Liu X, Li D et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol 2010; 185: 6226–6233.

    Article  CAS  PubMed  Google Scholar 

  24. O'Neill L, Sheedy F, McCoy C . MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 2011; 11: 163–175.

    Article  CAS  PubMed  Google Scholar 

  25. Calabrese J, Seila A, Yeo G, Sharp P . RNA sequence analysis defines Dicer's role in mouse embryonic stem cells. Proc Natl Acad Sci 2007; 104: 18097–18102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma F, Liu X, Li D, Wang P, Li N, Lu L et al. MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol 2010; 184: 6053–6059.

    Article  CAS  PubMed  Google Scholar 

  27. Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 2011; 19: 232–243.

    Article  CAS  PubMed  Google Scholar 

  28. Liu X, Zhan Z, Li D, Xu L, Ma F, Zhang P et al. Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining Btk activation. Nat Immunol 2011; 12: 416–424.

    Article  CAS  PubMed  Google Scholar 

  29. Xu S, Liu X, Bao Y, Zhu X, Han C, Zhang P et al. Constitutive MHC class I molecules negatively regulate TLR-triggered inflammatory responses via the Fps-SHP-2 pathway. Nat Immunol 2012; 13: 551–559.

    Article  CAS  PubMed  Google Scholar 

  30. Han C, Jin J, Xu S, Liu H, Li N, Cao X . Integrin CD11b negatively regulates TLR-triggered inflammatory response by activating Syk and promoting MyD88 and TRIF degradation via cbl-b. Nat Immunol 2010; 11: 734–742.

    Article  CAS  PubMed  Google Scholar 

  31. An H, Hou J, Zhou J, Zhao W, Xu H, Zheng Y et al. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat Immunol 2008; 9: 542–550.

    Article  CAS  PubMed  Google Scholar 

  32. Karaghiosoff M, Steinborn R, Kovarik P, Kriegshäuser G, Baccarini M, Donabauer B et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat Immunol 2003; 4: 471–477.

    Article  CAS  PubMed  Google Scholar 

  33. Sakaguchi S, Negishi H, Asagiri M, Nakajima C, Mizutani T, Takaoka A et al. Essential role of IRF-3 in lipopolysaccharide-induced interferon-beta gene expression and endotoxin shock. Biochem Biophys Res Commun 2003; 306: 860–866.

    Article  CAS  PubMed  Google Scholar 

  34. Livak K, Schmittgen T . Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  35. Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros W, Chi J . A viral microRNA functions as an orthologue of cellular miR-155. Nature 2007; 450: 1096–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karageorgas T, Tseronis D, Mavragani C . Activation of type I interferon pathway in systemic lupus erythematosus: association with distinct clinical phenotypes. J Biomed Biotechnol 2011; 2011: 273907.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nat Immunol 2011; 12: 861–869.

    Article  CAS  PubMed  Google Scholar 

  38. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N . Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (no. 81070880), and the China Postdoctoral Science Foundation funded project number 42201. The authors thank Ms Panpan Ma and Tingting Fang for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengcai Wang or Xueyin Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplemental Figure 1 Transfection efficiency of miR-466l. Mouse peritoneal macrophages (a), BMDCs (b) and human THP-1 monocytic cell line (c) were transfected with control mimics or miR-466l mimics using INTERFERin (polyplus transfection). After 24 h, total RNA was extracted and miR-466l was detected using qRT-PCR. The primers for miR-466l were RT primer: 5′-GTC GTA TCC AGT GCA GGG TCC GAG GTA TTC GCA CTG GAT ACG ACA ATA TG-3′; qPCR forward primer: 5′-CGT ATA AAT ACA TGC ACA-3′; qPCR reverse primer: 5′-GTG CAG GGT CCG AGG T-3′. Data are shown as mean±s.d. (n=4) of one representative experiment. Similar results were obtained in three independent experiments. **P<0.01. BMDC, bone marrow-derived dendritic cell. (PDF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Fan, X., He, X. et al. MicroRNA-466l inhibits antiviral innate immune response by targeting interferon-alpha. Cell Mol Immunol 9, 497–502 (2012). https://doi.org/10.1038/cmi.2012.35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.35

Keywords

This article is cited by

Search

Quick links