Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MicroRNAs are key regulators controlling iNKT and regulatory T-cell development and function

Abstract

MicroRNAs (miRNAs) are an abundant class of evolutionarily conserved, small, non-coding RNAs that post-transcriptionally regulate expression of their target genes. Emerging evidence indicates that miRNAs are important regulators that control the development, differentiation and function of different immune cells. Both CD4+CD25+Foxp3+ regulatory T (Treg) cells and invariant natural killer T (iNKT) cells are critical for immune homeostasis and play a pivotal role in the maintenance of self-tolerance and immunity. Here, we review the important roles of miRNAs in the development and function of iNKT and Treg cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.

    Article  CAS  Google Scholar 

  2. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005; 37: 766–770.

    Article  CAS  Google Scholar 

  3. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E . Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005; 120: 21–24.

    Article  CAS  Google Scholar 

  4. Engels BM, Hutvagner G . Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 2006; 25: 6163–6169.

    Article  CAS  Google Scholar 

  5. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  Google Scholar 

  6. Chen CZ, Lodish HF . MicroRNAs as regulators of mammalian hematopoiesis. Semin Immunol 2005; 17: 155–65.

    Article  CAS  Google Scholar 

  7. Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 2006; 103: 5078–5083.

    Article  CAS  Google Scholar 

  8. Zhan M, Miller CP, Papayannopoulou T, Stamatoyannopoulos G, Song CZ . MicroRNA expression dynamics during murine and human erythroid differentiation. Exp Hematol 2007; 35: 1015–1025.

    Article  CAS  Google Scholar 

  9. Lau NC, Lim LP, Weinstein EG, Bartel DP . An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294: 858–862.

    Article  CAS  Google Scholar 

  10. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23: 4051–4060.

    Article  CAS  Google Scholar 

  11. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A . Identification of mammalian microRNA host genes and transcription units. Genome Res 2004; 14: 1902–1910.

    Article  CAS  Google Scholar 

  12. Gregory RI, Chendrimada TP, Shiekhattar R . MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol Biol 2006; 342: 33–47.

    CAS  PubMed  Google Scholar 

  13. Murchison EP, Hannon GJ . miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 2004; 16: 223–229.

    Article  CAS  Google Scholar 

  14. Lund E, Dahlberg JE . Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol 2006; 71: 59–66.

    Article  CAS  Google Scholar 

  15. Kai ZS, Pasquinelli AE . MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol 2010; 17: 5–10.

    Article  CAS  Google Scholar 

  16. Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R . Embryonic stem cell-specific microRNAs regulate the G1–S transition and promote rapid proliferation. Nat Genet 2008; 40: 1478–1483.

    Article  CAS  Google Scholar 

  17. Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R . DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 2007; 39: 380–5.

    Article  CAS  Google Scholar 

  18. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ et al. Dicer is essential for mouse development. Nat Genet 2003; 35: 215–217.

    Article  CAS  Google Scholar 

  19. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 2005; 19: 489–501.

    Article  CAS  Google Scholar 

  20. Cobb BS, Hertweck A, Smith J, O'Connor E, Graf D, Cook T et al. A role for Dicer in immune regulation. J Exp Med 2006; 203: 2519–2527.

    Article  CAS  Google Scholar 

  21. Zhou L, Seo KH, He HZ, Pacholczyk R, Meng DM, Li CG et al. Tie2cre-induced inactivation of the miRNA-processing enzyme Dicer disrupts invariant NKT cell development. Proc Natl Acad Sci USA 2009; 106: 10266–10271.

    Article  CAS  Google Scholar 

  22. Seo KH, Zhou L, Meng D, Xu J, Dong Z, Mi QS . Loss of microRNAs in thymus perturbs invariant NKT cell development and function. Cell Mol Immunol 2010; 7: 447–453.

    Article  CAS  Google Scholar 

  23. Liston A, Lu LF, O'Carroll D, Tarakhovsky A, Rudensky AY . Dicer-dependent microRNA pathway safeguards regulatory T cell function. J Exp Med 2008; 205: 1993–2004.

    Article  CAS  Google Scholar 

  24. Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT et al. Selective miRNA disruption in Treg cells leads to uncontrolled autoimmunity. J Exp Med 2008; 205: 1983–1991.

    Article  CAS  Google Scholar 

  25. Chong MM, Rasmussen JP, Rudensky AY, Littman DR . The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med 2008; 205: 2005–2017.

    Article  CAS  Google Scholar 

  26. Zhou L, Seo KH, He HZ, Pacholczyk R, Meng DM, Li CG et al. Tie2cre-induced inactivation of the miRNA-processing enzyme Dicer disrupts invariant NKT cell development. Proc Natl Acad Sci USA 2009; 106: 10266–10271.

    Article  CAS  Google Scholar 

  27. Cobb BS, Nesterova TB, Thompson E, Hertweck A, O'Connor E, Godwin J et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 2005; 201: 1367–1373.

    Article  CAS  Google Scholar 

  28. Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A, Rajewsky K . Aberrant T cell differentiation in the absence of Dicer. J Exp Med 2005; 202: 261–269.

    Article  CAS  Google Scholar 

  29. Sakaguchi S . Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6: 345–352.

    Article  CAS  Google Scholar 

  30. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY . Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005; 22: 329–341.

    Article  CAS  Google Scholar 

  31. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY . Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 2007; 445: 936–940.

    Article  CAS  Google Scholar 

  32. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007; 445: 931–935.

    Article  CAS  Google Scholar 

  33. Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 2009; 30: 80–91.

    Article  CAS  Google Scholar 

  34. Yamamoto M, Kondo E, Takeuchi M, Harashima A, Otani T, Tsuji-Takayama K et al. miR-155, a modulator of FOXO3a protein expression, is underexpressed and cannot be upregulated by stimulation of HOZOT, a line of multifunctional Treg. PLoS One 2011; 6: e16841

    Article  CAS  Google Scholar 

  35. Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigorito E . Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol 2009; 182: 2578–2582.

    Article  CAS  Google Scholar 

  36. Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 2011; 208: 1189–1201.

    Article  CAS  Google Scholar 

  37. Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 2010; 142: 914–929.

    Article  CAS  Google Scholar 

  38. Taganov KD, Boldin MP, Chang KJ, Baltimore D . NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12481–12486.

    Article  CAS  Google Scholar 

  39. Hou J, Wang P, Lin L, Liu X, Ma F, An H et al. MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 2009; 183: 2150–2158.

    Article  CAS  Google Scholar 

  40. Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 2009; 60: 1065–1075.

    Article  CAS  Google Scholar 

  41. Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008; 9 405–414.

    Article  CAS  Google Scholar 

  42. Jeker LT, Kouchkovsky JE, Bluestone JA . The miR-17-92 cluster is essential for regulatory T cell function in vivo. 2011; 186: 168.14.

  43. Barron L, Dooms H, Hoyer KK, Kuswanto W, Hofmann J, O'Gorman WE et al. Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J Immunol 2010; 185: 6426–6430.

    Article  CAS  Google Scholar 

  44. Bendelac A, Savage PB, Teyton L . The biology of NKT cells. Annu Rev Immunol 2007; 25: 297–336.

    Article  CAS  Google Scholar 

  45. Morita CT, Verma S, Aparicio P, Martinez C, Spits H, Brenner MB . Functionally distinct subsets of human gamma/delta T cells. Eur J Immunol 1991; 21: 2999–3007.

    Article  CAS  Google Scholar 

  46. Benlagha K, Kyin T, Beavis A, Teyton L, Bendelac A . A thymic precursor to the NK T cell lineage. Science 2002; 296: 553–555.

    Article  CAS  Google Scholar 

  47. Wallace KL, Marshall MA, Ramos SI, Lannigan JA, Field JJ, Strieter RM et al. NKT cells mediate pulmonary inflammation and dysfunction in murine sickle cell disease through production of IFN-gamma and CXCR3 chemokines. Blood 2009; 114: 667–676.

    Article  CAS  Google Scholar 

  48. Van KL . NKT cells: T lymphocytes with innate effector functions. Curr Opin Immunol 2007; 19: 354–364.

    Article  Google Scholar 

  49. Kawamura T, Takeda K, Kaneda H, Matsumoto H, Hayakawa Y, Raulet DH et al. NKG2A inhibits invariant NKT cell activation in hepatic injury. J Immunol 2009; 182: 250–258.

    Article  CAS  Google Scholar 

  50. Takeda K, Hayakawa Y, van Kaer L, Matsuda H, Yagita H, Okumura K . Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci USA 2000; 97: 5498–5503.

    Article  CAS  Google Scholar 

  51. Berzins SP, Smyth MJ, Baxter AG . Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol 2011; 11: 131–142.

    Article  CAS  Google Scholar 

  52. Godfrey DI, Berzins SP . Control points in NKT-cell development. Nat Rev Immunol 2007; 7: 505–518.

    Article  CAS  Google Scholar 

  53. Leung B, Harris HW . NKT cells in sepsis. Clin Dev Immunol 2011; 2010.pii: 414650.

    Google Scholar 

  54. Sharif S, Arreaza GA, Zucker P, Delovitch TL . Regulatory natural killer T cells protect against spontaneous and recurrent type 1 diabetes. Ann NY Acad Sci 2002; 958: 77–88.

    Article  CAS  Google Scholar 

  55. Motohashi S . Clinical application of NKT cell system for lung cancer. Nippon Rinsho 2005; 63( Suppl.4): 574–578. Japanese.

    PubMed  Google Scholar 

  56. Knothe S, Mutschler V, Rochlitzer S, Winkler C, Ebensen T, Guzman CA et al. The NKT cell ligand alphagalactosylceramide suppresses allergic airway inflammation by induction of a Th1 response. Vaccine 2011; 29: 4249–4255.

    Article  CAS  Google Scholar 

  57. Gapin L, Matsuda JL, Surh CD, Kronenberg M . NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat Immunol 2001; 2: 971–978.

    Article  CAS  Google Scholar 

  58. Pellicci DG, Hammond KJ, Uldrich AP, Baxter AG, Smyth MJ, Godfrey DI . A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1−CD4+ CD1d-dependent precursor stage. J Exp Med 2002; 195: 835–844.

    Article  CAS  Google Scholar 

  59. Matsuda JL, Zhang Q, Ndonye R, Richardson SK, Howell AR, Gapin L . T-bet concomitantly controls migration, survival, and effector functions during the development of Valpha14i NKT cells. Blood 2006; 107: 2797–2805.

    Article  CAS  Google Scholar 

  60. Das R, Sant'Angelo DB, Nichols KE . Transcriptional control of invariant NKT cell development. Immunol Rev 2010; 238: 195–215.

    Article  CAS  Google Scholar 

  61. Fedeli M, Napolitano A, Wong MP, Marcais A, de LC, Colucci F et al. Dicer-dependent microRNA pathway controls invariant NKT cell development. J Immunol 2009; 183: 2506–2512.

    Article  CAS  Google Scholar 

  62. Chen CZ, Li L, Lodish HF, Bartel DP . MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–86.

    Article  CAS  Google Scholar 

  63. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008; 451: 1125–1129.

    Article  CAS  Google Scholar 

  64. Li K, Seo KH, Gao T, Zheng Q, Qi RQ, Wang H et al. Invariant NKT cell development and function in microRNA-223 knockout mice. Int Immunopharmacol 2010; 11: 561–568.

    Article  Google Scholar 

  65. Bezman NA, Chakraborty T, Pellerin A, Bender TP, Lanier LL . miR-150 differentially regulates the development of NK and NKT cells via targeting the transcript factor c-Myb. J Immunol 2011; 186: 153.37.

  66. Zhou L, Zheng QH, Mi QS . microRNA miR-150 regulates thymic NKT cell development and function. J Immunol 2011; 186: 153.38.

  67. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 2007; 131: 146–159.

    Article  CAS  Google Scholar 

  68. Hu T, Simmons A, Yuan J, Bender TP, berola-Ila J . The transcription factor c-Myb primes CD4+CD8+ immature thymocytes for selection into the iNKT lineage. Nat Immunol 2010; 11: 435–441.

    Article  CAS  Google Scholar 

  69. Sakamoto H, Dai G, Tsujino K, Hashimoto K, Huang X, Fujimoto T et al. Proper levels of c-Myb are discretely defined at distinct steps of hematopoietic cell development. Blood 2006; 108: 896–903.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was support in part by grants from the Juvenile Diabetes Research Foundation International and the Henry Ford Immunology Program startup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Mi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Park, JJ., Zheng, Q. et al. MicroRNAs are key regulators controlling iNKT and regulatory T-cell development and function. Cell Mol Immunol 8, 380–387 (2011). https://doi.org/10.1038/cmi.2011.27

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.27

Keywords

This article is cited by

Search

Quick links