Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer

Abstract

The most important biological function of exosomes is their possible use as biomarkers in clinical diagnosis. Compared with biomarkers identified in conventional specimens such as serum or urine, exosomal biomarkers provide the highest amount of sensitivity and specificity, which can be attributed to their excellent stability. Exosomes, which harbor different types of proteins, nucleic acids and lipids, are present in almost all bodily fluids. The molecular constituents of exosomes, especially exosomal proteins and microRNAs (miRNAs), are promising as biomarkers in clinical diagnosis. This discovery that exosomes also contain messenger RNAs and miRNAs shows that they could be carriers of genetic information. Although the majority of RNAs found in exosomes are degraded RNA fragments with a length of <200 nucleotides, some full-length RNAs might be present that may affect protein production in the recipient cell. In addition, exosomal miRNAs have been found to be associated with certain diseases. Several studies have pointed out miRNA contents of circulating exosomes that are similar to those of originating cancer cells. In this review, the recent advances in circulating exosomal miRNAs as biomarkers in gastrointestinal cancers are discussed. These studies indicated that miRNAs can be detected in exosomes isolated from body fluids such as saliva, which suggests potential advantages of using exosomal miRNAs as noninvasive novel biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Cowland JB, Hother C, GrØNbÆK K . MicroRNAs and cancer. APMIS 2007; 115: 1090–1106.

    CAS  PubMed  Google Scholar 

  2. Reddy SD, Gajula RP, Pakala SB, Kumar R . MicroRNAs and cancer therapy: the next wave or here to stay? Cancer Biol Ther 2010; 9: 479–482.

    Article  CAS  PubMed  Google Scholar 

  3. Ruan K, Fang X, Ouyang G . MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett 2009; 285: 116–126.

    CAS  PubMed  Google Scholar 

  4. Seto AG . The road toward microRNA therapeutics. Int J Biochem Cell Biol 2010; 42: 1298–1305.

    CAS  PubMed  Google Scholar 

  5. Barh D, Malhotra R, Ravi B, Sindhurani P . MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr Oncol 2010; 17: 70–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Köberle V, Pleli T, Schmithals C, Alonso EA, Haupenthal J, Bönig H et al. Differential stability of cell-free circulating microRNAs: implications for their utilization as biomarkers. PLoS One 2013; 8: e75184.

    PubMed  PubMed Central  Google Scholar 

  7. Lin J, Li J, Huang B, Liu J, Chen X, Chen X-M et al. Exosomes: novel biomarkers for clinical diagnosis. Scientific World Journal 2015; 2015: 657086.

    PubMed  PubMed Central  Google Scholar 

  8. Luo X, Burwinkel B, Tao S, Brenner H . MicroRNA signatures: novel biomarker for colorectal cancer? Cancer Epidemiol Biomarkers Prev 2011; 20: 1272–1286.

    CAS  PubMed  Google Scholar 

  9. Cicero AL, Stahl PD, Raposo G . Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol 2015; 35: 69–77.

    PubMed  Google Scholar 

  10. Zhang J, Li S, Li L, Li M, Guo C, Yao J et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 2015; 13: 17–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Buschow SI, Liefhebber JM, Wubbolts R, Stoorvogel W . Exosomes contain ubiquitinated proteins. Blood Cells Mol Dis 2005; 35: 398–403.

    CAS  PubMed  Google Scholar 

  12. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief C et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996; 183: 1161–1172.

    CAS  PubMed  Google Scholar 

  13. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nat Med 1998; 4: 594–600.

    CAS  PubMed  Google Scholar 

  14. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO . Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654–659.

    CAS  PubMed  Google Scholar 

  15. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 2010, 12: 19–30..

    PubMed  Google Scholar 

  16. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 2012; 14: 677–685..

    CAS  PubMed  Google Scholar 

  17. Greening DW, Gopal SX, Xu R, Simpson RJ, Chen W . Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol 2015: 72–81.

    CAS  Google Scholar 

  18. Shih KK, Levine DA . Exosomal microRNAs step into the biomarker arena. Gynecol Oncol 2008; 110: 1–2.

    CAS  PubMed  Google Scholar 

  19. Silverman JM, Reiner NE . Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes. Cell Microbiol 2011; 13: 1–9.

    CAS  PubMed  Google Scholar 

  20. Trams EG, Lauter CJ, Salem JN, Heine U . Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 1981; 645: 63–70.

    CAS  PubMed  Google Scholar 

  21. George GP, Mittal RD . MicroRNAs: potential biomarkers in cancer. Ind J Clin Biochem 2010; 25: 4–14.

    CAS  Google Scholar 

  22. Kim K, Lee H-C, Park J-L, Kim M, Kim S-Y, Noh S-M et al. Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer. Epigenetics 2011; 6: 740–751.

    CAS  PubMed  Google Scholar 

  23. Suzuki H, Yamamoto E, Nojima M, Kai M, Yamano H-o, Yoshikawa K et al. Methylation-associated silencing of microRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect. Carcinogenesis 2010; 31: 2066–2073.

    CAS  PubMed  Google Scholar 

  24. Tazawa H, Nagasaka T, Kagawa S, Fujiwara T . MicroRNA as a molecular target for gastrointestinal cancers. Transl Gastrointest Cancer 2015; 4: 219–235.

    CAS  Google Scholar 

  25. Gould GW, Lippincott-Schwartz J . New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nat Rev Mol Cell Biol 2009; 10: 287–292.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Van Ijzendoorn SC . Recycling endosomes. J Cell Sci 2006; 119: 1679–1681.

    CAS  PubMed  Google Scholar 

  27. Hess C, Sadallah S, Hefti A, Landmann R, Schifferli J-A . Ectosomes released by human neutrophils are specialized functional units. J Immunol 1999; 163: 4564–4573.

    CAS  PubMed  Google Scholar 

  28. Olver C, Vidal M . Proteomic analysis of secreted exosomes. In: Subcellular Proteomics. Springer, 2007 pp 99–131.

    Google Scholar 

  29. Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 2010; 5: e13247.

    PubMed  PubMed Central  Google Scholar 

  30. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008; 27: 2128–2136.

    CAS  PubMed  Google Scholar 

  31. Flatmark K, Maelandsmo GM, Martinsen M, Rasmussen H, Fodstad O . Twelve colorectal cancer cell lines exhibit highly variable growth and metastatic capacities in an orthotopic model in nude mice. Eur J Cancer 2004; 40: 1593–1598.

    PubMed  Google Scholar 

  32. Ghadjar P, Coupland SE, Na IK, Noutsias M, Letsch A, Stroux A et al. Chemokine receptor CCR6 expression level and liver metastases in colorectal cancer. J Clin Oncol 2006; 24: 1910–1916.

    CAS  PubMed  Google Scholar 

  33. Ghadjar P, Rubie C, Aebersold DM, Keilholz U . The chemokine CCL20 and its receptor CCR6 in human malignancy with focus on colorectal cancer. Int J Cancer 2009; 125: 741–745.

    CAS  PubMed  Google Scholar 

  34. Hrasovec S, Glavac D . MicroRNAs as novel biomarkers in colorectal cancer. Front Genet 2012; 3: 00180.

    CAS  Google Scholar 

  35. Huang Y, Yang YB, Zhang XH, Yu XL, Wang ZB, Cheng XC . MicroRNA-21 gene and cancer. Med Oncol 2013; 30: 012–0376.

    Google Scholar 

  36. Li T, Leong MH, Harms B, Kennedy G, Chen L . MicroRNA-21 as a potential colon and rectal cancer biomarker. World J Gastroenterol 2013; 19: 5615–5621.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Spizzo R, Rushworth D, Guerrero M, Calin GA . RNA inhibition, microRNAs, and new therapeutic agents for cancer treatment. Clin Lymphoma Myeloma 2009; 9 (Suppl 3): S313–S318.

    CAS  PubMed  Google Scholar 

  38. Toiyama Y, Takahashi M, Hur K, Nagasaka T, Tanaka K, Inoue Y et al. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst 2013; 105: 849–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tom BH, Rutzky LP, Jakstys MM, Oyasu R, Kaye CI, Kahan BD . Human colonic adenocarcinoma cells. I. Establishment and description of a new line. In Vitro 1976; 12: 180–191.

    CAS  PubMed  Google Scholar 

  40. Vicinus B, Rubie C, Faust SK, Frick VO, Ghadjar P, Wagner M et al. miR-21 functionally interacts with the 3'UTR of chemokine CCL20 and down-regulates CCL20 expression in miR-21 transfected colorectal cancer cells. Cancer Lett 2012; 316: 105–112.

    CAS  PubMed  Google Scholar 

  41. Xu J, Liao X, Wong C . Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG. Int J Cancer 2010; 126: 1029–1035.

    CAS  PubMed  Google Scholar 

  42. Edwards BK, Ward E, Kohler BA, Eheman C, Zauber AG, Anderson RN et al. Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer 2010; 116: 544–573.

    PubMed  Google Scholar 

  43. Gong B, Liu WW, Nie WJ, Li DF, Xie ZJ, Liu C et al. MiR-21/RASA1 axis affects malignancy of colon cancer cells via RAS pathways. World J Gastroenterol 2015; 21: 1488–1497.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Curry WT et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10: 1470–1476.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L . Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 2007; 67: 2912–2915.

    CAS  PubMed  Google Scholar 

  46. Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X . Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 2010; 127: 118–126.

    CAS  PubMed  Google Scholar 

  47. Brase JC, Wuttig D, Kuner R, Sultmann H . Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 2010; 9: 306.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nedaeinia R, Sharifi M, Avan A, Kazemi M, Rafiee L, Ghayour-Mobarhan M et al. Locked nucleic acid anti-miR-21 inhibits cell growth and invasive behaviors of a colorectal adenocarcinoma cell line: LNA-anti-miR as a novel approach. Cancer Gene Ther 2016; 23: 246–253.

    CAS  PubMed  Google Scholar 

  49. Vatandoost N, Ghanbari J, Mojaver M, Avan A, Ghayour-Mobarhan M, Nedaeinia R et al. Early detection of colorectal cancer: from conventional methods to novel biomarkers. J Cancer Res Clin Oncol 2015; 142: 341–351.

    PubMed  Google Scholar 

  50. Mazeh H, Mizrahi I, Ilyayev N, Halle D, Brücher BL, Bilchik A et al. The diagnostic and prognostic role of microRNA in colorectal cancer-a comprehensive review. J Cancer 2013; 4: 281.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–647.

    CAS  PubMed  Google Scholar 

  52. Mayr C, Hemann MT, Bartel DP . Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 2007; 315: 1576–1579.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setién F et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 2007; 67: 1424–1429.

    CAS  PubMed  Google Scholar 

  54. Akao Y, Nakagawa Y, Naoe T . MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep 2006; 16: 845–850.

    CAS  PubMed  Google Scholar 

  55. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Körner H et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 2008; 7: 2591–2600.

    CAS  PubMed  Google Scholar 

  56. Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One 2014; 9: e92921.

    PubMed  PubMed Central  Google Scholar 

  57. Vogt M, Munding J, Grüner M, Liffers S-T, Verdoodt B, Hauk J et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Archiv 2011; 458: 313–322.

    PubMed  Google Scholar 

  58. Matsumura T, Sugimachi K, Iinuma H, Takahashi Y, Kurashige J, Sawada G et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer 2015; 113: 275–281.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Johnstone R, Ahn J . A common mechanism may be involved in the selective loss of plasma membrane functions during reticulocyte maturation. Biomed Biochim Acta 1989; 49: S70–S75.

    Google Scholar 

  60. Saif MW . Pancreatic neoplasm in 2011: an update. JOP 2011; 12: 316–321.

    PubMed  Google Scholar 

  61. Chan A, Diamandis EP, Blasutig IM . Strategies for discovering novel pancreatic cancer biomarkers. J Proteomics 2013; 81: 126–134.

    CAS  PubMed  Google Scholar 

  62. David M, Lepage C, Jouve J, Jooste V, Chauvenet M, Faivre J et al. Management and prognosis of pancreatic cancer over a 30-year period. Br J Cancer 2009; 101: 215–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nedaeinia R, Avan A, Manian M, Salehi R, Ghayour-Mobarhan M . EGFR as a potential target for the treatment of pancreatic cancer: dilemma and controversies. Curr Drug Targets 2014; 15: 1293–1301.

    CAS  PubMed  Google Scholar 

  64. EL Andaloussi S, Mager I, Breakefield XO, Wood MJ . Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013; 12: 347–357.

    CAS  PubMed  Google Scholar 

  65. An T, Qin S, Xu Y, Tang Y, Huang Y, Situ B et al. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles 2015; 4: 27522.

    PubMed  Google Scholar 

  66. Record M, Carayon K, Poirot M, Silvente-Poirot S . Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta 2014; 1841: 108–120.

    CAS  PubMed  Google Scholar 

  67. Choi DS, Kim DK, Kim YK, Gho YS . Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 2013; 13: 1554–1571.

    CAS  PubMed  Google Scholar 

  68. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438: 820–827.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zoller M . Pancreatic cancer diagnosis by free and exosomal miRNA. World J Gastrointest Pathophysiol 2013; 4: 74–90.

    PubMed  PubMed Central  Google Scholar 

  70. Tetta C, Ghigo E, Silengo L, Deregibus MC, Camussi G . Extracellular vesicles as an emerging mechanism of cell-to-cell communication. Endocrine 2013; 44: 11–19.

    CAS  PubMed  Google Scholar 

  71. Taucher V, Mangge H, Haybaeck J . Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application. Cell Oncol 2016; 39: 295–318.

    CAS  Google Scholar 

  72. Yu C, Wang M, Li Z, Xiao J, Peng F, Guo X et al. MicroRNA-138-5p regulates pancreatic cancer cell growth through targeting FOXC1. Cell Oncol 2015; 38: 173–181.

    Google Scholar 

  73. Que R, Ding G, Chen J, Cao L . Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol 2013; 11: 1.

    Google Scholar 

  74. Sceneay J, Smyth MJ, Moller A . The pre-metastatic niche: finding common ground. Cancer Metastasis Rev 2013; 32: 449–464.

    CAS  PubMed  Google Scholar 

  75. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18: 883–891.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hood JL, San RS, Wickline SA . Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 2011; 71: 3792–3801.

    CAS  PubMed  Google Scholar 

  77. Corbett TH, Roberts BJ, Leopold WR, Peckham JC, Wilkoff LJ, Griswold DP Jr. et al. Induction and chemotherapeutic response of two transplantable ductal adenocarcinomas of the pancreas in C57BL/6 mice. Cancer Res 1984; 44: 717–726.

    CAS  PubMed  Google Scholar 

  78. Little E, Wang C, Watson P, Watson D, Cole D, Camp R . Novel immunocompetent murine models representing advanced local and metastatic pancreatic cancer. J Surg Res 2012; 176: 359–366.

    CAS  PubMed  Google Scholar 

  79. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005; 7: 469–483.

    CAS  PubMed  Google Scholar 

  80. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012; 148: 349–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 2015; 17: 816–826.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hayashi H, Sakai T . Biological significance of local TGF-β activation in liver diseases. Front Physiol 2012; 3: 12.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kaur S, Krishn SR, Rachagani S, Batra SK . Significance of microRNA-based biomarkers for pancreatic cancer. Ann Transl Med 2015; 3: 277.

    PubMed  PubMed Central  Google Scholar 

  85. Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007; 297: 1901–1908.

    CAS  PubMed  Google Scholar 

  86. Que R, Ding G, Chen J, Cao L . Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol 2013; 11: 219.

    PubMed  PubMed Central  Google Scholar 

  87. Wang Z, Lu Y, Han J . Peripheral blood microRNAs: a novel tool for diagnosing disease? Intractable Rare Dis Res 2012; 1: 98–102.

    PubMed  PubMed Central  Google Scholar 

  88. Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007; 297: 1901–1908.

    CAS  PubMed  Google Scholar 

  89. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E . Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005; 120: 21–24.

    CAS  PubMed  Google Scholar 

  90. Pillai RS . MicroRNA function: multiple mechanisms for a tiny RNA? RNA 2005; 11: 1753–1761.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zamore PD, Haley B . Ribo-gnome: the big world of small RNAs. Science 2005; 309: 1519–1524.

    CAS  PubMed  Google Scholar 

  92. Chen CZ, Li L, Lodish HF, Bartel DP . MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–86.

    CAS  PubMed  Google Scholar 

  93. Croce CM, Calin GA . miRNAs, cancer, and stem cell division. Cell 2005; 122: 6–7.

    CAS  PubMed  Google Scholar 

  94. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    CAS  PubMed  Google Scholar 

  95. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18: 997–1006.

    CAS  PubMed  Google Scholar 

  96. Filipowicz W, Bhattacharyya SN, Sonenberg N . Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9: 102–114.

    CAS  PubMed  Google Scholar 

  97. Clayton A, Court J, Navabi H, Adams M, Mason MD, Hobot JA et al. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 2001; 247: 163–174.

    CAS  PubMed  Google Scholar 

  98. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C . Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987; 262: 9412–9420.

    CAS  PubMed  Google Scholar 

  99. Quesenberry PJ, Aliotta JM . The paradoxical dynamism of marrow stem cells: considerations of stem cells, niches, and microvesicles. Stem Cell Rev 2008; 4: 137–147.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ . Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006; 20: 1487–1495.

    CAS  PubMed  Google Scholar 

  101. Tanaka Y, Kamohara H, Kinoshita K, Kurashige J, Ishimoto T, Iwatsuki M et al. Clinical impact of serum exosomal microRNA‐21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer 2013; 119: 1159–1167.

    CAS  PubMed  Google Scholar 

  102. Chen X, Hu H, Guan X, Xiong G, Wang Y, Wang K et al. CpG island methylation status of miRNAs in esophageal squamous cell carcinoma. Int J Cancer 2012; 130: 1607–1613.

    CAS  PubMed  Google Scholar 

  103. Takeshita N, Hoshino I, Mori M, Akutsu Y, Hanari N, Yoneyama Y et al. Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer 2013; 108: 644–652.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA et al. Proteomic and immunologic analyses of brain tumor exosomes. FASEB J 2009; 23: 1541–1557.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Tanaka Y, Kamohara H, Kinoshita K, Kurashige J, Ishimoto T, Iwatsuki M et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer 2013; 119: 1159–1167.

    CAS  PubMed  Google Scholar 

  106. Takeshita N, Hoshino I, Mori M, Akutsu Y, Hanari N, Yoneyama Y et al. Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer 2013; 108: 644–652.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Hiyoshi Y, Kamohara H, Karashima R, Sato N, Imamura Y, Nagai Y et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma. Clin Cancer Res 2009; 15: 1915–1922.

    CAS  PubMed  Google Scholar 

  108. Chiam K, Wang T, Watson DI, Mayne GC, Irvine TS, Bright T et al. Circulating serum exosomal miRNAs as potential biomarkers for esophageal adenocarcinoma. J Gastrointest Surg 2015; 19: 1208–1215.

    PubMed  Google Scholar 

  109. Warnecke-Eberz U, Chon SH, Hölscher AH, Drebber U, Bollschweiler E . Exosomal onco-miRs from serum of patients with adenocarcinoma of the esophagus: comparison of miRNA profiles of exosomes and matching tumor. Tumour Biol 2015; 36: 4643–4653.

    CAS  PubMed  Google Scholar 

  110. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H . Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 2007; 104: 15472–15477.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ma L, Teruya-Feldstein J, Weinberg RA . Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449: 682–688.

    CAS  PubMed  Google Scholar 

  112. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    CAS  PubMed  Google Scholar 

  113. Saito Y, Suzuki H, Hibi T . The role of microRNAs in gastrointestinal cancers. J Gastroenterol 2009; 44 (Suppl 19): 18–22.

    CAS  PubMed  Google Scholar 

  114. Song B, Ju J . Impact of miRNAs in gastrointestinal cancer diagnosis and prognosis. Expert Rev Mol Med 2010; 12: e33.

    PubMed  Google Scholar 

  115. Tazawa H, Kagawa S, Fujiwara T . MicroRNAs as potential target gene in cancer gene therapy of gastrointestinal tumors. Expert Opin Biol Ther 2011; 11: 145–155.

    CAS  PubMed  Google Scholar 

  116. Hermeking H . The miR-34 family in cancer and apoptosis. Cell Death Differ 2010; 17: 193–199.

    CAS  PubMed  Google Scholar 

  117. Rokavec M, Li H, Jiang L, Hermeking H . The p53/microRNA connection in gastrointestinal cancer. Clin Exp Gastroenterol 2014; 7: 395–413.

    PubMed  PubMed Central  Google Scholar 

  118. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    CAS  PubMed  Google Scholar 

  119. Parkin DM, Bray F, Ferlay J, Pisani P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    PubMed  Google Scholar 

  120. Xiao D, Ohlendorf J, Chen Y, Taylor DD, Rai SN, Waigel S et al. Identifying mRNA, microRNA and protein profiles of melanoma exosomes. PLoS One 2012; 7: e46874.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56: 1733–1741..

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Gallo A, Tandon M, Alevizos I, Illei GG . The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 2012; 7: e30679.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sohn W, Kim J, Kang SH, Yang SR, Cho JY, Cho HC et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp Mol Med 2015; 47: e184.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem 2013; 288: 26888–26897.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Szafranska A, Davison T, John J, Cannon T, Sipos B, Maghnouj A et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 2007; 26: 4442–4452.

    CAS  PubMed  Google Scholar 

  126. Dillhoff M, Liu J, Frankel W, Croce C, Bloomston M . MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg 2008; 12: 2171–2176.

    PubMed  PubMed Central  Google Scholar 

  127. Gironella M, Seux M, Xie M-J, Cano C, Tomasini R, Gommeaux J et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci 2007; 104: 16170–16175.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Habbe N, Koorstra J-BM, Mendell JT, Offerhaus GJ, Ryu JK, Feldmann G et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther 2009; 8: 340–346.

    CAS  PubMed  Google Scholar 

  129. Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 2007; 120: 1046–1054.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Moriyama T, Ohuchida K, Mizumoto K, Yu J, Sato N, Nabae T et al. MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol Cancer Ther 2009; 8: 1067–1074.

    CAS  PubMed  Google Scholar 

  131. Zhang Y, Li M, Wang H, Fisher WE, Lin PH, Yao Q et al. Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J Surg 2009; 33: 698–709.

    PubMed  PubMed Central  Google Scholar 

  132. Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 2006; 24: 4677–4684.

    CAS  PubMed  Google Scholar 

  133. Nouraee N, Khazaei S, Vasei M, Razavipour SF, Sadeghizadeh M, Mowla SJ . MicroRNAs contribution in tumor microenvironment of esophageal cancer. Cancer Biomark 2016; 16: 367–376.

    CAS  PubMed  Google Scholar 

  134. Liang L, Wong CM, Ying Q, Fan DNY, Huang S, Ding J et al. MicroRNA‐125b suppressed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B. Hepatology 2010; 52: 1731–1740.

    CAS  PubMed  Google Scholar 

  135. Xie K, Liu J, Chen J, Dong J, Ma H, Liu Y et al. Methylation-associated silencing of microRNA-34b in hepatocellular carcinoma cancer. Gene 2014; 543: 101–107.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from Mashhad University of Medical Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Avan or M Ghayour-Mobarhan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedaeinia, R., Manian, M., Jazayeri, M. et al. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Ther 24, 48–56 (2017). https://doi.org/10.1038/cgt.2016.77

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2016.77

This article is cited by

Search

Quick links