Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The combination of i-leader truncation and gemcitabine improves oncolytic adenovirus efficacy in an immunocompetent model

Abstract

Adenovirus (Ad) i-leader protein is a small protein of unknown function. The C-terminus truncation of the i-leader protein increases Ad release from infected cells and cytotoxicity. In the current study, we use the i-leader truncation to enhance the potency of an oncolytic Ad. In vitro, an i-leader truncated oncolytic Ad is released faster to the supernatant of infected cells, generates larger plaques, and is more cytotoxic in both human and Syrian hamster cell lines. In mice bearing human tumor xenografts, the i-leader truncation enhances oncolytic efficacy. However, in a Syrian hamster pancreatic tumor model, which is immunocompetent and less permissive to human Ad, antitumor efficacy is only observed when the i-leader truncated oncolytic Ad, but not the non-truncated version, is combined with gemcitabine. This synergistic effect observed in the Syrian hamster model was not seen in vitro or in immunodeficient mice bearing the same pancreatic hamster tumors, suggesting a role of the immune system in this synergism. These results highlight the interest of the i-leader C-terminus truncation because it enhances the antitumor potency of an oncolytic Ad and provides synergistic effects with gemcitabine in the presence of an immune competent system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pesonen S, Kangasniemi L, Hemminki A . Oncolytic adenoviruses for the treatment of human cancer: focus on translational and clinical data. Mol Pharm 2011; 8: 12–28.

    Article  CAS  PubMed  Google Scholar 

  2. Alemany R . Design of improved oncolytic adenoviruses. Adv Cancer Res 2012; 115: 93–114.

    Article  CAS  PubMed  Google Scholar 

  3. Ganesh S, Gonzalez Edick M, Idamakanti N, Abramova M, Vanroey M, Robinson M et al. Relaxin-expressing, fiber chimeric oncolytic adenovirus prolongs survival of tumor-bearing mice. Cancer Res 2007; 67: 4399–4407.

    Article  CAS  PubMed  Google Scholar 

  4. Guedan S, Rojas JJ, Gros A, Mercade E, Cascallo M, Alemany R . Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther 2010; 18: 1275–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gros A, Guedan S . Adenovirus release from the infected cell as a key factor for adenovirus oncolysis. Open Gene Ther J 2010; 3: 24–30.

    Article  CAS  Google Scholar 

  6. Puig-Saus C, Gros A, Alemany R, Cascallo M . Adenovirus i-leader truncation bioselected against cancer-associated fibroblasts to overcome tumor stromal barriers. Mol Ther 2012; 20: 54–62.

    Article  CAS  PubMed  Google Scholar 

  7. Yan W, Kitzes G, Dormishian F, Hawkins L, Sampson-Johannes A, Watanabe J et al. Developing novel oncolytic adenoviruses through bioselection. J Virol 2003; 77: 2640–2650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Subramanian T, Vijayalingam S, Chinnadurai G . Genetic identification of adenovirus type 5 genes that influence viral spread. J Virol 2006; 80: 2000–2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rojas JJ, Guedan S, Searle PF, Martinez-Quintanilla J, Gil-Hoyos R, Alcayaga-Miranda F et al. Minimal RB-responsive E1A promoter modification to attain potency, selectivity, and transgene-arming capacity in oncolytic adenoviruses. Mol Ther 2010; 18: 1960–1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Doronin K, Toth K, Kuppuswamy M, Ward P, Tollefson AE, Wold WS . Tumor-specific replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol 2000; 74: 6147–6155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gros A, Martinez-Quintanilla J, Puig C, Guedan S, Mollevi DG, Alemany R et al. Bioselection of a gain of function mutation that enhances adenovirus 5 release and improves its antitumoral potency. Cancer Res 2008; 68: 8928–8937.

    Article  CAS  PubMed  Google Scholar 

  12. Gros A, Puig C, Guedan S, Rojas JJ, Alemany R, Cascallo M . Verapamil enhances the antitumoral efficacy of oncolytic adenoviruses. Mol Ther 2010; 18: 903–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alemany R, Cascallo M . Oncolytic viruses from the perspective of the immune system. Future Microbiol 2009; 4: 527–536.

    Article  CAS  PubMed  Google Scholar 

  14. Khoobyarian N, Barone F, Sabet T, El-Domeiri AA, Das Gupta TK . Inhibition of melanoma growth in hamsters by type-2 adenovirus. J Surg Oncol 1975; 7: 421–425.

    Article  CAS  PubMed  Google Scholar 

  15. Thomas MA, Spencer JF, La Regina MC, Dhar D, Tollefson AE, Toth K et al. Syrian hamster as a permissive immunocompetent animal model for the study of oncolytic adenovirus vectors. Cancer Res 2006; 66: 1270–1276.

    Article  CAS  PubMed  Google Scholar 

  16. Thomas MA, Spencer JF, Toth K, Sagartz JE, Phillips NJ, Wold WS . Immunosuppression enhances oncolytic adenovirus replication and antitumor efficacy in the Syrian hamster model. Mol Ther 2008; 16: 1665–1673.

    Article  CAS  PubMed  Google Scholar 

  17. Cherubini G, Kallin C, Mozetic A, Hammaren-Busch K, Muller H, Lemoine NR et al. The oncolytic adenovirus AdDeltaDelta enhances selective cancer cell killing in combination with DNA-damaging drugs in pancreatic cancer models. Gene Ther 2011; 18: 1157–1165.

    Article  CAS  PubMed  Google Scholar 

  18. Leitner S, Sweeney K, Oberg D, Davies D, Miranda E, Lemoine NR et al. Oncolytic adenoviral mutants with E1B19K gene deletions enhance gemcitabine-induced apoptosis in pancreatic carcinoma cells and anti-tumor efficacy in vivo. Clin Cancer Res 2009; 15: 1730–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Onimaru M, Ohuchida K, Nagai E, Mizumoto K, Egami T, Cui L et al. Combination with low-dose gemcitabine and hTERT-promoter-dependent conditionally replicative adenovirus enhances cytotoxicity through their crosstalk mechanisms in pancreatic cancer. Cancer Lett 2010; 294: 178–186.

    Article  CAS  PubMed  Google Scholar 

  20. Nelson AR, Davydova J, Curiel DT, Yamamoto M . Combination of conditionally replicative adenovirus and standard chemotherapies shows synergistic antitumor effect in pancreatic cancer. Cancer Sci 2009; 100: 2181–2187.

    Article  CAS  PubMed  Google Scholar 

  21. Bortolanza S, Bunuales M, Alzuguren P, Lamas O, Aldabe R, Prieto J et al. Deletion of the E3-6.7 K/gp19K region reduces the persistence of wild-type adenovirus in a permissive tumor model in Syrian hamsters. Cancer Gene Ther 2009; 16: 703–712.

    Article  CAS  PubMed  Google Scholar 

  22. Hecht JR, Bedford R, Abbruzzese JL, Lahoti S, Reid TR, Soetikno RM et al. A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res 2003; 9: 555–561.

    CAS  PubMed  Google Scholar 

  23. Bhattacharyya M, Francis J, Eddouadi A, Lemoine NR, Hallden G . An oncolytic adenovirus defective in pRb-binding (dl922-947) can efficiently eliminate pancreatic cancer cells and tumors in vivo in combination with 5-FU or gemcitabine. Cancer Gene Ther 2011; 18: 734–743.

    Article  CAS  PubMed  Google Scholar 

  24. Neesse A, Michl P, Frese KK, Feig C, Cook N, Jacobetz MA et al. Stromal biology and therapy in pancreatic cancer. Gut 2010; 60: 861–868.

    Article  PubMed  Google Scholar 

  25. Russell SJ, Peng KW, Bell JC . Oncolytic virotherapy. Nat Biotechnol 2012; 30: 658–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shiao SL, Ganesan AP, Rugo HS, Coussens LM . Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 2011; 25: 2559–2572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu WM, Fowler DW, Smith P, Dalgleish AG . Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses. Br J Cancer 2010; 102: 115–123.

    Article  CAS  PubMed  Google Scholar 

  28. Plate JM, Plate AE, Shott S, Bograd S, Harris JE . Effect of gemcitabine on immune cells in subjects with adenocarcinoma of the pancreas. Cancer Immunol Immunother 2005; 54: 915–925.

    Article  CAS  PubMed  Google Scholar 

  29. Rettig L, Seidenberg S, Parvanova I, Samaras P, Curioni A, Knuth A et al. Gemcitabine depletes regulatory T-cells in human and mice and enhances triggering of vaccine-specific cytotoxic T-cells. Int J Cancer 2011; 129: 832–838.

    Article  CAS  PubMed  Google Scholar 

  30. Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD . Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol 2009; 9: 900–909.

    Article  CAS  PubMed  Google Scholar 

  31. Ma Y, Kepp O, Ghiringhelli F, Apetoh L, Aymeric L, Locher C et al. Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin Immunol 2010; 22: 113–124.

    Article  PubMed  Google Scholar 

  32. Locher C, Conforti R, Aymeric L, Ma Y, Yamazaki T, Rusakiewicz S et al. Desirable cell death during anticancer chemotherapy. Ann N Y Acad Sci 2010; 1209: 99–108.

    Article  CAS  PubMed  Google Scholar 

  33. Schierer S, Hesse A, Knippertz I, Kaempgen E, Baur AS, Schuler G et al. Human dendritic cells efficiently phagocytose adenoviral oncolysate but require additional stimulation to mature. Int J Cancer 2012; 130: 1682–1694.

    Article  CAS  PubMed  Google Scholar 

  34. Chen M, Barnfield C, Naslund TI, Fleeton MN, Liljestrom P . MyD88 expression is required for efficient cross-presentation of viral antigens from infected cells. J Virol 2005; 79: 2964–2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schulz O, Diebold SS, Chen M, Naslund TI, Nolte MA, Alexopoulou L et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 2005; 433: 887–892.

    Article  CAS  PubMed  Google Scholar 

  36. Boozari B, Mundt B, Woller N, Struver N, Gurlevik E, Schache P et al. Antitumoural immunity by virus-mediated immunogenic apoptosis inhibits metastatic growth of hepatocellular carcinoma. Gut 2010; 59: 1416–1426.

    Article  CAS  PubMed  Google Scholar 

  37. Dias JD, Hemminki O, Diaconu I, Hirvinen M, Bonetti A, Guse K et al. Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene Ther 2012; 19: 988–998.

    Article  CAS  PubMed  Google Scholar 

  38. Stanton RJ, McSharry BP, Armstrong M, Tomasec P, Wilkinson GW . Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function. Biotechniques 2008; 45: 659–662.

    Article  CAS  PubMed  Google Scholar 

  39. Laquente B, Lacasa C, Ginesta MM, Casanovas O, Figueras A, Galan M et al. Antiangiogenic effect of gemcitabine following metronomic administration in a pancreas cancer model. Mol Cancer Ther 2008; 7: 638–647.

    Article  CAS  PubMed  Google Scholar 

  40. Gujar SA, Michalak TI . Flow cytometric quantification of T cell proliferation and division kinetics in woodchuck model of hepatitis B. Immunol Invest 2005; 34: 215–236.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Miriam Bazan Peregrino for extensive revision of the manuscript. CPS was supported by a master fellowship from ‘La Caixa’ and a predoctoral fellowship (PFIS) granted by the ‘Instituto de Salud Carlos III’ FI08/00163. This work was supported by a BIO2011-30299-C02-01 grant from the ‘Ministerio de Educación y Ciencia’ of the Government of Spain (RA) and a 2009SGR283 research grant from the ‘Generalitat de Catalunya’ (RA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Alemany.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puig-Saus, C., Laborda, E., Rodríguez-García, A. et al. The combination of i-leader truncation and gemcitabine improves oncolytic adenovirus efficacy in an immunocompetent model. Cancer Gene Ther 21, 68–73 (2014). https://doi.org/10.1038/cgt.2013.85

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2013.85

Keywords

This article is cited by

Search

Quick links