Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells

Subjects

Abstract

As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kim KY, Kim SU, Leung PC, Jeung EB, Choi KC . Influence of the prodrugs 5-fluorocytosine and CPT-11 on ovarian cancer cells using genetically engineered stem cells: tumor-tropic potential and inhibition of ovarian cancer cell growth. Cancer Sci 2010; 101: 955–962.

    Article  CAS  PubMed  Google Scholar 

  2. Kim SU, Jeung EB, Kim YB, Cho MH, Choi KC . Potential tumor-tropic effect of genetically engineered stem cells expressing suicide enzymes to selectively target invasive cancer in animal models. Anticancer Res 2011; 31: 1249–1258.

    PubMed  Google Scholar 

  3. Yi BR, O SN, Kang NH, Hwang KA, Kim SU, Jeung EB et al. Genetically engineered stem cells expressing cytosine deaminase and interferon-beta migrate to human lung cancer cells and have potentially therapeutic anti-tumor effects. Int J Oncol 2011; 39: 833–839.

    CAS  PubMed  Google Scholar 

  4. Cao F, Lin S, Xie X, Ray P, Patel M, Zhang X et al. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 2006; 113: 1005–1014.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xie X, Cao F, Sheikh AY, Li Z, Connolly AJ, Pei X et al. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function. Cloning Stem Cells 2007; 9: 549–563.

    Article  CAS  PubMed  Google Scholar 

  6. Chaudhry GR, Fecek C, Lai MM, Wu WC, Chang M, Vasquez A et al. Fate of embryonic stem cell derivatives implanted into the vitreous of a slow retinal degenerative mouse model. Stem Cells Dev Mar 2009; 18: 247–258.

    Article  CAS  Google Scholar 

  7. Lee AS, Tang C, Cao F, Xie X, van der Bogt K, Hwang A et al. Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle 2009; 8: 2608–2612.

    Article  CAS  PubMed  Google Scholar 

  8. Dobreva MP, Pereira PN, Deprest J, Zwijsen A . On the origin of amniotic stem cells: of mice and men. Int J Dev Biol 2010; 54: 761–777.

    Article  CAS  PubMed  Google Scholar 

  9. Ayuzawa R, Doi C, Rachakatla RS, Pyle MM, Maurya DK, Troyer D et al. Naive human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett 2009; 280: 31–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gurudutta GU, Satija NK, Singh VK, Verma YK, Gupta P, Tripathi RP . Stem cell therapy: a novel & futuristic treatment modality for disaster injuries. Indian J Med Res 2012; 135: 15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gimble JM, Katz AJ, Bunnell BA . Adipose-derived stem cells for regenerative medicine. Circ Res 2007; 100: 1249–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Secchiero P, Zorzet S, Tripodo C, Corallini F, Melloni E, Caruso L et al. Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin's lymphoma xenografts. PLoS One 2010; 5: e11140.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini III F . Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 2011; 29: 11–19.

    Article  CAS  PubMed  Google Scholar 

  14. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557–563.

    Article  CAS  PubMed  Google Scholar 

  15. Toda A, Okabe M, Yoshida T, Nikaido T . The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 2007; 105: 215–228.

    Article  CAS  PubMed  Google Scholar 

  16. Da Sacco S, Sedrakyan S, Boldrin F, Giuliani S, Parnigotto P, Habibian R et al. Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. J Urol 2010; 183: 1193–1200.

    Article  CAS  PubMed  Google Scholar 

  17. De Coppi P, Bartsch Jr G, Siddiqui MM, Xu T, Santos CC, Perin L et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25: 100–106.

    Article  CAS  PubMed  Google Scholar 

  18. Paracchini V, Carbone A, Colombo F, Castellani S, Mazzucchelli S, Gioia SD et al. Amniotic mesenchymal stem cells: a new source for hepatocyte-like cells and induction of CFTR expression by coculture with cystic fibrosis airway epithelial cells. J Biomed Biotechnol 2012; 2012: 575471.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tamagawa T, Ishiwata I, Nakamura Y . Differentiation of human amniotic membrane cells into osteoblasts in vitro. Hum Cell 2005; 18: 191–195.

    Article  PubMed  Google Scholar 

  20. Takashima S, Yasuo M, Sanzen N, Sekiguchi K, Okabe M, Yoshida T et al. Characterization of laminin isoforms in human amnion. Tissue Cell 2008; 40: 75–81.

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi M, Yakuwa T, Sasaki K, Sato K, Kikuchi A, Kamo I et al. Multilineage potential of side population cells from human amnion mesenchymal layer. Cell Transplant 2008; 17: 291–301.

    Article  CAS  PubMed  Google Scholar 

  22. Kakishita K, Nakao N, Sakuragawa N, Itakura T . Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res 2003; 980: 48–56.

    Article  CAS  PubMed  Google Scholar 

  23. Wu ZY, Hui GZ, Lu Y, Wu X, Guo LH . Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury. Chin Med J (Engl) 2006; 119: 2101–2107.

    Article  Google Scholar 

  24. Jiao H, Guan F, Yang B, Li J, Song L, Hu X et al. Human amniotic membrane derived-mesenchymal stem cells induce C6 glioma apoptosis in vivo through the Bcl-2/caspase pathways. Mol Biol Rep 2012; 39: 467–473.

    Article  CAS  PubMed  Google Scholar 

  25. Luo H, Huang X, Huang F, Liu X . [Preliminary study on transdifferentiation of human amniotic epithelial cells and its intrasplenic transplantation]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2011; 25: 144–148.

    PubMed  Google Scholar 

  26. Zhang D, Jiang M, Miao D . Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One 2011; 6: e16789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Simat SF, Chua KH, Abdul Rahman H, Tan AE, Tan GC . The stemness gene expression of cultured human amniotic epithelial cells in serial passages. Med J Malaysia 2008; 63 (Suppl A): 53–54.

    PubMed  Google Scholar 

  28. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC . Stem cell characteristics of amniotic epithelial cells. Stem Cells 2005; 23: 1549–1559.

    Article  CAS  PubMed  Google Scholar 

  29. Marongiu F, Gramignoli R, Dorko K, Miki T, Ranade AR, Paola Serra M et al. Hepatic differentiation of amniotic epithelial cells. Hepatology 2011; 53: 1719–1729.

    Article  CAS  PubMed  Google Scholar 

  30. Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U . Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 2007; 77: 577–588.

    Article  CAS  PubMed  Google Scholar 

  31. Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M et al. Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol 2007; 7: 11.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim J, Lee Y, Kim H, Hwang KJ, Kwon HC, Kim SK et al. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif 2007; 40: 75–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003; 102: 1548–1549.

    Article  PubMed  Google Scholar 

  34. Zhao P, Ise H, Hongo M, Ota M, Konishi I, Nikaido T . Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 2005; 79: 528–535.

    Article  PubMed  Google Scholar 

  35. Phermthai T, Odglun Y, Julavijitphong S, Titapant V, Chuenwattana P, Vantanasiri C et al. A novel method to derive amniotic fluid stem cells for therapeutic purposes. BMC Cell Biol 2010; 11: 79.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Prusa AR, Hengstschlager M . Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit 2002; 8: RA253–RA257.

    PubMed  Google Scholar 

  37. Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschlager M . Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod 2003; 18: 1489–1493.

    Article  PubMed  Google Scholar 

  38. Zhang X, Chen X, Wang H, Liu S . [Development of amniotic fluid-derived stem cell]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2008; 22: 864–868.

    PubMed  Google Scholar 

  39. Aboody KS, Bush RA, Garcia E, Metz MZ, Najbauer J, Justus KA et al. Development of a tumor-selective approach to treat metastatic cancer. PLoS One 2006; 1: e23.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Aboody KS, Najbauer J, Schmidt NO, Yang W, Wu JK, Zhuge Y et al. Targeting of melanoma brain metastases using engineered neural stem/progenitor cells. Neuro Oncol 2006; 8: 119–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aghi M, Kramm CM, Chou TC, Breakefield XO, Chiocca EA . Synergistic anticancer effects of ganciclovir/thymidine kinase and 5-fluorocytosine/cytosine deaminase gene therapies. J Natl Cancer Inst 1998; 90: 370–380.

    Article  CAS  PubMed  Google Scholar 

  42. Anderson LM, Krotz S, Weitzman SA, Thimmapaya B . Breast cancer-specific expression of the Candida albicans cytosine deaminase gene using a transcriptional targeting approach. Cancer Gene Ther 2000; 7: 845–852.

    Article  CAS  PubMed  Google Scholar 

  43. Kucerova L, Matuskova M, Pastorakova A, Tyciakova S, Jakubikova J, Bohovic R et al. Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J Gene Med 2008; 10: 1071–1082.

    Article  CAS  PubMed  Google Scholar 

  44. Lee DH, Ahn Y, Kim SU et al. Targeting rat brainstem glioma using human neural stem cells and human mesenchymal stem cells. Clin Cancer Res 2009; 15: 4925–4934.

    Article  CAS  PubMed  Google Scholar 

  45. Fidan E, Fidan S, Yildiz B, Durmus I, Kavgaci H, Ozdemir F et al. Bolus fluorouracil induced syncope and pulseless ventricular tachycardia: a case report. Hippokratia 2011; 15: 93–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Longley DB, Harkin DP, Johnston PG . 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3: 330–338.

    Article  CAS  PubMed  Google Scholar 

  47. Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira ll et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med 2006; 203: 1235–1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roland CL, Lynn KD, Toombs JE, Dineen SP, Udugamasooriya DG, Brekken RA . Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer. PLoS One 2009; 4: e7669.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M . Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol 2003; 75: 248–255.

    Article  CAS  PubMed  Google Scholar 

  50. Gardner SL . Application of stem cell transplant for brain tumors. Pediatr Transplant 2004; 8 (Suppl 5): 28–32.

    Article  PubMed  Google Scholar 

  51. Koskimaki JE, Karagiannis ED, Rosca EV, Vesuna F, Winnard Jr PT, Raman V et al. Peptides derived from type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins inhibit neovascularization and suppress tumor growth in MDA-MB-231 breast cancer xenografts. Neoplasia 2009; 11: 1285–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD . Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 2008; 269: 67–77.

    Article  CAS  PubMed  Google Scholar 

  53. Cho JA, Park H, Kim HK, Lim EH, Seo SW, Choi JS et al. Hyperthermia-treated mesenchymal stem cells exert antitumor effects on human carcinoma cell line. Cancer 2009; 115: 311–323.

    Article  CAS  PubMed  Google Scholar 

  54. Kang NH, Yi BR, Lim SY, Hwang KA, Baek YS, Kang KS et al. Human amniotic membrane-derived epithelial stem cells display anticancer activity in BALB/c female nude mice bearing disseminated breast cancer xenografts. Int J Oncol 2012; 40: 2022–2028.

    CAS  PubMed  Google Scholar 

  55. Manuelpillai U, Tchongue J, Lourensz D, Vaghjiani V, Samuel CS, Liu A et al. Transplantation of human amnion epithelial cells reduces hepatic fibrosis in immunocompetent CCl-treated mice. Cell Transplant 2010; 19: 1157–1168.

    Article  PubMed  Google Scholar 

  56. Peterson SM, Iskenderian A, Cook L, Romashko A, Tobin K, Jones M et al. Human sulfatase 2 inhibits in vivo tumor growth of MDA-MB-231 human breast cancer xenografts. BMC Cancer 2010; 10: 427.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bi WL, Parysek LM, Warnick R, Stambrook PJ . In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy. Hum Gene Ther 1993; 4: 725–731.

    Article  CAS  PubMed  Google Scholar 

  58. Iankov ID, Msaouel P, Allen C, Federspiel MJ, Bulur PA, Dietz AB et al. Demonstration of anti-tumor activity of oncolytic measles virus strains in a malignant pleural effusion breast cancer model. Breast Cancer Res Treat 2010; 122: 745–754.

    Article  PubMed  Google Scholar 

  59. Hajitou A, Trepel M, Lilley CE, Soghomonyan S, Alauddin MM, Marini III FC et al. A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell 2006; 125: 385–398.

    Article  CAS  PubMed  Google Scholar 

  60. Yi BR, Hwang KA, Kang NH, Kim SU, Jeung EB, Choi KC . Antitumor therapeutic effects of cytosine deaminase and interferon-beta against endometrial cancer cells using genetically engineered stem cells in vitro. Anticancer Res 2011; 31: 2853–2862.

    CAS  PubMed  Google Scholar 

  61. Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C . Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 2007; 67: 6304–6313.

    Article  CAS  PubMed  Google Scholar 

  62. Lifang Y, Min T, Midan A, Ya C . HSV-tk/GCV gene therapy mediated by EBV-LMP1 for EBV-associated cancer. J Exp Clin Cancer Res 2008; 27: 42.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ishii-Morita H, Agbaria R, Mullen CA, Hirano H, Koeplin DA, Ram Z et al. Mechanism of ‘bystander effect’ killing in the herpes simplex thymidine kinase gene therapy model of cancer treatment. Gene Ther 1997; 4: 244–251.

    Article  CAS  PubMed  Google Scholar 

  64. Tang W, He Y, Zhou S, Ma Y, Liu G . A novel Bifidobacterium infantis-mediated TK/GCV suicide gene therapy system exhibits antitumor activity in a rat model of bladder cancer. J Exp Clin Cancer Res 2009; 28: 155.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Uckert W, Kammertons T, Haack K, Qin Z, Gebert J, Schendel DJ et al. Double suicide gene (cytosine deaminase and herpes simplex virus thymidine kinase) but not single gene transfer allows reliable elimination of tumor cells in vivo. Hum Gene Ther 1998; 9: 855–865.

    Article  CAS  PubMed  Google Scholar 

  66. Kim SK, Kim SU, Park IH et al. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res 2006; 12: 5550–5556.

    Article  CAS  PubMed  Google Scholar 

  67. Boucher PD, Im MM, Freytag SO, Shewach DS . A novel mechanism of synergistic cytotoxicity with 5-fluorocytosine and ganciclovir in double suicide gene therapy. Cancer Res 2006; 66: 3230–3237.

    Article  CAS  PubMed  Google Scholar 

  68. Coley HM . Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat Rev 2008; 34: 378–390.

    Article  CAS  PubMed  Google Scholar 

  69. Tomicic MT, Thust R, Kaina B . Ganciclovir-induced apoptosis in HSV-1 thymidine kinase expressing cells: critical role of DNA breaks, Bcl-2 decline and caspase-9 activation. Oncogene 2002; 21: 2141–2153.

    Article  CAS  PubMed  Google Scholar 

  70. Yi C, Huang Y, Guo ZY, Wang SR . Antitumor effect of cytosine deaminase/5-fluorocytosine suicide gene therapy system mediated by Bifidobacterium infantis on melanoma. Acta Pharmacol Sin 2005; 26: 629–634.

    Article  CAS  PubMed  Google Scholar 

  71. Rubsam LZ, Davidson BL, Shewach DS . Superior cytotoxicity with ganciclovir compared with acyclovir and 1-beta-D-arabinofuranosylthymine in herpes simplex virus-thymidine kinase-expressing cells: a novel paradigm for cell killing. Cancer Res 1998; 58: 3873–3882.

    CAS  PubMed  Google Scholar 

  72. Zhang JF, Wei F, Wang HP, Li HM, Qiu W, Ren PK et al. Potent anti-tumor activity of telomerase-dependent and HSV-TK armed oncolytic adenovirus for non-small cell lung cancer in vitro and in vivo. J Exp Clin Cancer Res 2010; 29: 52.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gu C, Li S, Tokuyama T, Yokota N, Namba H . Therapeutic effect of genetically engineered mesenchymal stem cells in rat experimental leptomeningeal glioma model. Cancer Lett 2010; 291: 256–262.

    Article  CAS  PubMed  Google Scholar 

  74. Joo KM, Park IH, Shin JY, Jin J, Kang BG, Kim MH et al. Human neural stem cells can target and deliver therapeutic genes to breast cancer brain metastases. Mol Ther 2009; 17: 570–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kang NH, Choi KC . 207 Engineered human amniotic fluid-derived stem cells by expressing cytosine deaminase (cd) and thymidine kinase (hsv-tk) mediate targeting killing effect in breast cancer cells. Reprod Fertil Dev 2012; 24: 216.

    Article  Google Scholar 

  76. Bitsika V, Roubelakis MG, Zagoura D, Trohatou O, Makridakis M, Pappa KI et al. Human amniotic fluid-derived mesenchymal stem cells as therapeutic vehicles: a novel approach for the treatment of bladder cancer. Stem Cells Dev 2012; 21: 1097–1111.

    Article  CAS  PubMed  Google Scholar 

  77. Hauser PV, De Fazio R, Bruno S, Sdei S, Grange C, Bussolati B et al. Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. Am J Pathol 2010; 177: 2011–2021.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by two National Research Foundation of Korea (NRF) grants funded by the Ministry of Education, Science and Technology (MEST) of Korea Government (no. 2010-0003093 and 2011-0015385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K-C Choi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, NH., Hwang, KA., Kim, S. et al. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells. Cancer Gene Ther 19, 517–522 (2012). https://doi.org/10.1038/cgt.2012.30

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.30

Keywords

This article is cited by

Search

Quick links