Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of T cell-mediated antitumor immunity after construct-specific downregulation of retrovirally encoded T-cell receptor expression in vivo

Abstract

Adoptive T-cell therapy is clinically efficacious in the treatment of select cancers. However, it is often difficult to obtain adequate numbers of tumor-specific T cells for therapy. One method for overcoming this limitation is to generate tumor-specific T cells by retrovirally mediated T-cell-receptor (TCR) gene transfer. However, despite instances of therapeutic success, major obstacles remain, including attaining the survival of retrovirally modified T cells in vivo as well as inducing long-term and multi-gene retroviral expression. Using a murine model of adoptively transferred retrovirally modified CD8+ T cells, where antitumor immunity was dependent on sustained, multigene expression, we found that in vitro assays are poor indicators of in vivo efficacy. Despite persisting for over 9 months in a nonlymphopenic environment, genetically modified T cells exhibited discordant retrovirally mediated gene expression in vivo not readily evident from initial in vitro assays. In particular, one of the two TCR subunit genes necessary for antigen specificity was selectively lost in vivo. As this discordant gene expression was associated with the loss of antitumor immunity, consideration of these findings may provide guidance in the design, evaluation and application of retroviral vectors for use in the treatment of cancer and other human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gattinoni L, Powell Jr DJ, Rosenberg SA, Restifo NP . Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 2006; 6: 383–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heemskerk MH . Optimizing TCR gene transfer. Clin Immunol 2006; 119: 121–122.

    Article  CAS  PubMed  Google Scholar 

  3. Xue S, Gillmore R, Downs A, Tsallios A, Holler A, Gao L et al. Exploiting T cell receptor genes for cancer immunotherapy. Clin Exp Immunol 2005; 139: 167–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coccoris M, de Witte MA, Schumacher TN . Prospects and limitations of T cell receptor gene therapy. Curr Gene Ther 2005; 5: 583–593.

    Article  CAS  PubMed  Google Scholar 

  5. Clay TM, Morse M, Lyerly HK . Redirecting cytotoxic T lymphocyte responses with T-cell receptor transgenes. Expert Opin Biol Ther 2002; 2: 353–360.

    Article  CAS  PubMed  Google Scholar 

  6. Kessels HW, Wolkers MC, van den Boom MD, van der Valk MA, Schumacher TN . Immunotherapy through TCR gene transfer. Nat Immunol 2001; 2: 957–961.

    Article  CAS  PubMed  Google Scholar 

  7. Xue SA, Gao L, Hart D, Gillmore R, Qasim W, Thrasher A et al. Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 2005; 106: 3062–3067.

    Article  CAS  PubMed  Google Scholar 

  8. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheever MA, Chen W . Therapy with cultured T cells: principles revisited. Immunol Rev 1997; 157: 177–194.

    Article  CAS  PubMed  Google Scholar 

  10. Sprent J, Surh CD . T cell memory. Annu Rev Immunol 2002; 20: 551–579.

    Article  CAS  PubMed  Google Scholar 

  11. Tanchot C, Rosado MM, Agenes F, Freitas AA, Rocha B . Lymphocyte homeostasis. Semin Immunol 1997; 9: 331–337.

    Article  CAS  PubMed  Google Scholar 

  12. Persons DA, Nienhuis AW . Gene therapy for the hemoglobin disorders: past, present, and future. Proc Natl Acad Sci USA 2000; 97: 5022–5024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roe T, Reynolds TC, Yu G, Brown PO . Integration of murine leukemia virus DNA depends on mitosis. EMBO J 1993; 12: 2099–2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rubinstein MP, Kadima AN, Salem ML, Nguyen CL, Gillanders WE, Nishimura MI et al. Transfer of TCR genes into mature T cells is accompanied by the maintenance of parental T cell avidity. J Immunol 2003; 170: 1209–1217.

    Article  CAS  PubMed  Google Scholar 

  15. Kelly JM, Sterry SJ, Cose S, Turner SJ, Fecondo J, Rodda S et al. Identification of conserved T cell receptor CDR3 residues contacting known exposed peptide side chains from a major histocompatibility complex class I-bound determinant. Eur J Immunol 1993; 23: 3318–3326.

    Article  CAS  PubMed  Google Scholar 

  16. Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR . T cell receptor antagonist peptides induce positive selection. Cell 1994; 76: 17–27.

    Article  CAS  PubMed  Google Scholar 

  17. Zebedee SL, Barritt D, Epstein R, Raschke WC . Analysis of Ly5 chromosome 1 position using allelic differences and recombinant inbred mice. Eur J Immunogenet 1991; 18: 155–163.

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen CL, Bui JT, Demcheva M, Vournakis JN, Cole DJ, Gillanders WE . Sustained release of granulocyte–macrophage colony-stimulating factor from a modular peptide-based cancer vaccine alters vaccine microenvironment and enhances the antigen-specific T-cell response. J Immunother 2001; 24: 420–429.

    Article  CAS  PubMed  Google Scholar 

  19. Brown DM, Fisher TL, Wei C, Frelinger JG, Lord EM . Tumours can act as adjuvants for humoral immunity. Immunology 2001; 102: 486–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fidler IJ . Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 1975; 35: 218–224.

    CAS  PubMed  Google Scholar 

  21. Stotz SH, Bolliger L, Carbone FR, Palmer E . T cell receptor (TCR) antagonism without a negative signal: evidence from T cell hybridomas expressing two independent TCRs. J Exp Med 1999; 189: 253–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Treisman J, Hwu P, Minamoto S, Shafer GE, Cowherd R, Morgan RA et al. Interleukin-2-transduced lymphocytes grow in an autocrine fashion and remain responsive to antigen. Blood 1995; 85: 139–145.

    CAS  PubMed  Google Scholar 

  23. Markowitz D, Goff S, Bank A . A safe packaging line for gene transfer: separating viral genes on two different plasmids. J Virol 1988; 62: 1120–1124.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Crossland KD, Lee VK, Chen W, Riddell SR, Greenberg PD, Cheever MA . T cells from tumor-immune mice nonspecifically expanded in vitro with anti-CD3 plus IL-2 retain specific function in vitro and can eradicate disseminated leukemia in vivo. J Immunol 1991; 146: 4414–4420.

    CAS  PubMed  Google Scholar 

  25. Yoshizawa H, Chang AE, Shu S . Specific adoptive immunotherapy mediated by tumor-draining lymph node cells sequentially activated with anti-CD3 and IL-2. J Immunol 1991; 147: 729–737.

    CAS  PubMed  Google Scholar 

  26. Dobrzanski MJ, Reome JB, Dutton RW . Therapeutic effects of tumor-reactive type 1 and type 2 CD8+ T cell subpopulations in established pulmonary metastases. J Immunol 1999; 162: 6671–6680.

    CAS  PubMed  Google Scholar 

  27. Oehen S, Brduscha-Riem K . Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J Immunol 1998; 161: 5338–5346.

    CAS  PubMed  Google Scholar 

  28. Hamann A, Klugewitz K, Austrup F, Jablonski-Westrich D . Activation induces rapid and profound alterations in the trafficking of T cells. Eur J Immunol 2000; 30: 3207–3218.

    Article  CAS  PubMed  Google Scholar 

  29. Letourneur F, Malissen B . Derivation of a T cell hybridoma variant deprived of functional T cell receptor alpha and beta chain transcripts reveals a nonfunctional alpha-mRNA of BW5147 origin. Eur J Immunol 1989; 19: 2269–2274.

    Article  CAS  PubMed  Google Scholar 

  30. Sallusto F, Geginat J, Lanzavecchia A . Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 2004; 22: 745–763.

    Article  CAS  PubMed  Google Scholar 

  31. Palu G, Parolin C, Takeuchi Y, Pizzato M . Progress with retroviral gene vectors. Rev Med Virol 2000; 10: 185–202.

    Article  CAS  PubMed  Google Scholar 

  32. Pannell D, Ellis J . Silencing of gene expression: implications for design of retrovirus vectors. Rev Med Virol 2001; 11: 205–217.

    Article  CAS  PubMed  Google Scholar 

  33. Pages JC, Bru T . Toolbox for retrovectorologists. J Gene Med 2004; 6 (Suppl 1): S67–S82.

    Article  CAS  PubMed  Google Scholar 

  34. Baum C, Düllmann J, Li Z, Fehse B, Meyer J, Williams DA et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003; 101: 2099–2114.

    Article  CAS  PubMed  Google Scholar 

  35. Swindle CS, Klug CA . Mechanisms that regulate silencing of gene expression from retroviral vectors. J Hematother Stem Cell Res 2002; 11: 449–456.

    Article  CAS  PubMed  Google Scholar 

  36. Bestor TH . Gene silencing as a threat to the success of gene therapy. J Clin Invest 2000; 105: 409–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lund AH, Duch M, Pedersen FS . Transcriptional silencing of retroviral vectors. J Biomed Sci 1996; 3: 365–378.

    Article  CAS  PubMed  Google Scholar 

  38. Quinn ER, Lum LG, Trevor KT . T cell activation modulates retrovirus-mediated gene expression. Hum Gene Ther 1998; 9: 1457–1467.

    Article  CAS  PubMed  Google Scholar 

  39. Bromberg JS, Debruyne LA, Qin L . Interactions between the immune system and gene therapy vectors: bidirectional regulation of response and expression. Adv Immunol 1998; 69: 353–409.

    Article  CAS  PubMed  Google Scholar 

  40. Song W, Kong HL, Traktman P, Crystal RG . Cytotoxic T lymphocyte responses to proteins encoded by heterologous transgenes transferred in vivo by adenoviral vectors. Hum Gene Ther 1997; 8: 1207–1217.

    Article  CAS  PubMed  Google Scholar 

  41. Valera A, Perales JC, Hatzoglou M, Bosch F . Expression of the neomycin-resistance (neo) gene induces alterations in gene expression and metabolism. Hum Gene Ther 1994; 5: 449–456.

    Article  CAS  PubMed  Google Scholar 

  42. Artelt P, Grannemann R, Stocking C, Friel J, Bartsch J, Hauser H . The prokaryotic neomycin-resistance-encoding gene acts as a transcriptional silencer in eukaryotic cells. Gene 1991; 99: 249–254.

    Article  CAS  PubMed  Google Scholar 

  43. Byun J, Kim JM, Robbins PD, Kim S . The selectable marker neo gene down-regulates gene expression from retroviral vectors containing an internal ribosome entry site. Gene Ther 1998; 5: 1441–1444.

    Article  CAS  PubMed  Google Scholar 

  44. Robb L, Rasko JE, Bath ML, Strasser A, Begley CG . scl a gene frequently activated in human T cell leukaemia, does not induce lymphomas in transgenic mice. Oncogene 1995; 10: 205–209.

    CAS  PubMed  Google Scholar 

  45. Bodrug SE, Warner BJ, Bath ML, Lindeman GJ, Harris AW, Adams JM . Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J 1994; 13: 2124–2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Watanabe M, Ueno Y, Yajima T, Okamoto S, Hayashi T, Yamazaki M et al. Interleukin 7 transgenic mice develop chronic colitis with decreased interleukin 7 protein accumulation in the colonic mucosa. J Exp Med 1998; 187: 389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fujita H, Hata J, Kokai Y, Matsubayashi Y, Takabe Y, Fujimoto J . Expression pattern of SR alpha promoter in human embryonal carcinoma and transgenic tissues in mice. Acta Pathol Jpn 1992; 42: 712–718.

    CAS  PubMed  Google Scholar 

  48. Wu X, Holschen J, Kennedy SC, Ponder KP . Retroviral vector sequences may interact with some internal promoters and influence expression. Hum Gene Ther 1996; 7: 159–171.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang B, Metharom P, Jullie H, Ellem KA, Cleghorn G, West MJ et al. The significance of controlled conditions in lentiviral vector titration and in the use of multiplicity of infection (MOI) for predicting gene transfer events. Genet Vaccines Ther 2004; 2: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bajaj BG, Lei P, Andreadis ST . Efficient gene transfer to human epidermal keratinocytes on fibronectin: in vitro evidence for transduction of epidermal stem cells. Mol Ther 2005; 11: 969–979.

    Article  CAS  PubMed  Google Scholar 

  51. Movassagh M, Boyer O, Burland MC, Leclercq V, Klatzmann D, Lemoine FM . Retrovirus-mediated gene transfer into T cells: 95% transduction efficiency without further in vitro selection. Hum Gene Ther 2000; 11: 1189–1200.

    Article  CAS  PubMed  Google Scholar 

  52. Williams DA, Orkin SH, Mulligan RC . Retrovirus-mediated transfer of human adenosine deaminase gene sequences into cells in culture and into murine hematopoietic cells in vivo. Proc Natl Acad Sci USA 1986; 83: 2566–2570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morgan JR, LeDoux JM, Snow RG, Tompkins RG, Yarmush ML . Retrovirus infection: effect of time and target cell number. J Virol 1995; 69: 6994–7000.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kang J, Wither J, Hozumi N . Long-term expression of a T-cell receptor beta-chain gene in mice reconstituted with retrovirus-infected hematopoietic stem cells. Proc Natl Acad Sci USA 1990; 87: 9803–9807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Plavec I, Voytovich A, Moss K, Webster D, Hanley MB, Escaich S et al. Sustained retroviral gene marking and expression in lymphoid and myeloid cells derived from transduced hematopoietic progenitor cells. Gene Ther 1996; 3: 717–724.

    CAS  PubMed  Google Scholar 

  56. Culver KW, Morgan RA, Osborne WR, Lee RT, Lenschow D, Able C et al. In vivo expression and survival of gene-modified T lymphocytes in rhesus monkeys. Hum Gene Ther 1990; 1: 399–410.

    Article  CAS  PubMed  Google Scholar 

  57. Mitsuyasu RT, Anton PA, Deeks SG, Scadden DT, Connick E, Downs MT et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood 2000; 96: 785–793.

    CAS  PubMed  Google Scholar 

  58. Walker RE, Bechtel CM, Natarajan V, Baseler M, Hege KM, Metcalf JA et al. Long-term in vivo survival of receptor-modified syngeneic T cells in patients with human immunodeficiency virus infection. Blood 2000; 96: 467–474.

    CAS  PubMed  Google Scholar 

  59. Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF . Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 2005; 174: 4465–4469.

    Article  CAS  PubMed  Google Scholar 

  60. Chang J, Cho JH, Lee SW, Choi SY, Ha SJ, Sung YC . IL-12 priming during in vitro antigenic stimulation changes properties of CD8 T cells and increases generation of effector and memory cells. J Immunol 2004; 172: 2818–2826.

    Article  CAS  PubMed  Google Scholar 

  61. Valenzuela J, Schmidt C, Mescher M . The roles of IL-12 in providing a third signal for clonal expansion of naive CD8 T cells. J Immunol 2002; 169: 6842–6849.

    Article  CAS  PubMed  Google Scholar 

  62. Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, Jenkins MK et al. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 1999; 162: 3256–3262.

    CAS  PubMed  Google Scholar 

  63. Bubbers JE, Elder JH, Dixon FJ . Stimulation of murine lymphocytes by Rauscher leukemia virus in vitro. J Immunol 1980; 124: 388–394.

    CAS  PubMed  Google Scholar 

  64. Sinn PL, Sauter SL, McCray Jr PB . Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors—design, biosafety, and production. Gene Ther 2005; 12: 1089–1098.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Rick Peppler and Candace Enockson for excellent help in flow cytometric analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M P Rubinstein.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website (http://www.nature.com/cgt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinstein, M., Salem, M., Kadima, A. et al. Loss of T cell-mediated antitumor immunity after construct-specific downregulation of retrovirally encoded T-cell receptor expression in vivo. Cancer Gene Ther 16, 171–183 (2009). https://doi.org/10.1038/cgt.2008.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.63

Keywords

This article is cited by

Search

Quick links