Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrasensitive detection of toxic cations through changes in the tunnelling current across films of striped nanoparticles

Abstract

Although multiple methods have been developed to detect metal cations, only a few offer sensitivities below 1 pM, and many require complicated procedures and sophisticated equipment. Here, we describe a class of simple solid-state sensors for the ultrasensitive detection of heavy-metal cations (notably, an unprecedented attomolar limit for the detection of CH3Hg+ in both standardized solutions and environmental samples) through changes in the tunnelling current across films of nanoparticles (NPs) protected with striped monolayers of organic ligands. The sensors are also highly selective because of the ligand–shell organization of the NPs. On binding of metal cations, the electronic structure of the molecular bridges between proximal NPs changes, the tunnelling current increases and highly conductive paths ultimately percolate the entire film. The nanoscale heterogeneity of the structure of the film broadens the range of the cation-binding constants, which leads to wide sensitivity ranges (remarkably, over 18 orders of magnitude in CH3Hg+ concentration).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and typical jE plots.
Figure 2: Sensitivity (left column) and selectivity (right column) of cation sensing by different types of Au NPs decorated by HT/EGn SAMs.
Figure 3: Selectivity of the films on exposure to cation mixtures and environmental samples.
Figure 4: Rationalizing the conductance through the molecular bridge between the striped NPs.
Figure 5: Percolation of Au NP films on cation binding.

Similar content being viewed by others

References

  1. Boening, D. W. Ecological effects, transport, and fate of mercury: A general review. Chemosphere 40, 1335–1351 (2000).

    Article  CAS  Google Scholar 

  2. Clarkson, T. W. The toxicology of mercury. Crit. Rev. Clin. Lab. Sci. 34, 369–403 (1997).

    Article  CAS  Google Scholar 

  3. Matsumoto, H., Koya, G. & Takeuchi, T. Fetal minamata disease: A neuropathological study of two cases of intrauterine intoxication by a methyl mercury compound. J. Neuropathol. Exp. Neurol. 24, 563–574 (1965).

    Article  CAS  Google Scholar 

  4. Harada, M. Minamata disease—methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 25, 1–24 (1995).

    Article  CAS  Google Scholar 

  5. Inaba, T. et al. Estimation of cumulative cadmium intake causing Itai-itai disease. Toxicol. Lett. 159, 192–201 (2005).

    Article  CAS  Google Scholar 

  6. Nomiyama, K. Recent progress and perspectives in cadmium health-effects studies. Sci. Total Environ. 14, 199–232 (1980).

    Article  CAS  Google Scholar 

  7. Nriagu, J. O. & Pacyna, J. M. Quantitative assessment of worldwide contamination of air, water and soils by trace-metals. Nature 333, 134–139 (1988).

    Article  CAS  Google Scholar 

  8. Lin, S. H. & Juang, R. S. Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J. Hazard. Mater. 92, 315–326 (2002).

    Article  CAS  Google Scholar 

  9. Jensen, S. & Jernelov, A. Biological methylation of mercury in aquatic organisms. Nature 223, 753–754 (1969).

    Article  CAS  Google Scholar 

  10. Narin, I., Soylak, M., Elci, L. & Dogan, M. Determination of trace metal ions by AAS in natural water samples after preconcentration of pyrocatechol violet complexes on an activated carbon column. Talanta 52, 1041–1046 (2000).

    Article  CAS  Google Scholar 

  11. Ghaedi, M., Ahmadi, F. & Shokrollahi, A. Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J. Hazard. Mater. 142, 272–278 (2007).

    Article  CAS  Google Scholar 

  12. Caroli, S., Forte, G., Iamiceli, A. L. & Galoppi, B. Determination of essential and potentially toxic trace elements in honey by inductively coupled plasma-based techniques. Talanta 50, 327–336 (1999).

    Article  CAS  Google Scholar 

  13. Demuth, N. & Heumann, K. G. Validation of methylmercury determinations in aquatic systems by alkyl derivatization methods for GC analysis using ICP-IDMS. Anal. Chem. 73, 4020–4027 (2001).

    Article  CAS  Google Scholar 

  14. Lee, J. S., Han, M. S. & Mirkin, C. A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 46, 4093–4096 (2007).

    Article  CAS  Google Scholar 

  15. Huang, C. C. & Chang, H. T. Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem. Commun. 1215–1217 (2007).

  16. Chiang, C. K., Huang, C. C., Liu, C. W. & Chang, H. T. Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury (II) in aqueous solution. Anal. Chem. 80, 3716–3721 (2008).

    Article  CAS  Google Scholar 

  17. Chang, H. Y., Hsiung, T. M., Huang, Y. F. & Huang, C. C. Using rhodamine 6G-modified gold nanoparticles to detect organic mercury species in highly saline solutions. Environ. Sci. Technol. 45, 1534–1539 (2011).

    Article  CAS  Google Scholar 

  18. Kang, T., Hong, S. R., Moon, J., Oh, S. & Yi, J. Fabrication of reusable sensor for detection of Cu2+ in an aqueous solution using a self-assembled monolayer with surface plasmon resonance spectroscopy. Chem. Commun. 3721–3723 (2005).

  19. Li, D., Wieckowska, A. & Willner, I. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew. Chem. Int. Ed. 47, 3927–3931 (2008).

    Article  CAS  Google Scholar 

  20. Wang, G. Q., Wang, Y. Q., Chen, L. X. & Choo, J. Nanomaterial-assisted aptamers for optical sensing. Biosens. Bioelectron. 25, 1859–1868 (2010).

    Article  CAS  Google Scholar 

  21. Yin, J. et al. SERS-active nanoparticles for sensitive and selective detection of cadmium ion (Cd2+). Chem. Mater. 23, 4756–4764 (2011).

    Article  CAS  Google Scholar 

  22. Lin, Z. Z., Li, X. H. & Kraatz, H. B. Impedimetric immobilized DNA-based sensor for simultaneous detection of Pb2+, Ag+, and Hg2+. Anal. Chem. 83, 6896–6901 (2011).

    Article  CAS  Google Scholar 

  23. Zhang, Z., Yu, K., Bai, D. & Zhu, Z. Q. Synthesis and electrochemical sensing toward heavy metals of bunch-like bismuth nanostructures. Nanoscale Res. Lett. 5, 398–402 (2010).

    Article  CAS  Google Scholar 

  24. Thompson, R. B., Maliwal, B. P., Feliccia, V. L., Fierke, C. A. & McCall, K. Determination of picomolar concentrations of metal lens using fluorescence anisotropy: Biosensing with a ‘reagentless’ enzyme transducer. Anal. Chem. 70, 4717–4723 (1998).

    Article  CAS  Google Scholar 

  25. Forzani, E. S., Zhang, H. Q., Chen, W. & Tao, N. J. Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor. Environ. Sci. Technol. 39, 1257–1262 (2005).

    Article  CAS  Google Scholar 

  26. Kumar, M. & Zhang, P. Highly sensitive and selective label-free optical detection of mercuric ions using photon upconverting nanoparticles. Biosens. Bioelectron. 25, 2431–2435 (2010).

    Article  CAS  Google Scholar 

  27. Song, H. D. et al. Picomolar selective detection of mercuric ion (Hg2+) using a functionalized single plasmonic gold nanoparticle. Nanotechnology 21, 145501 (2010).

    Article  Google Scholar 

  28. Hinkle, P. M., Kinsella, P. A. & Osterhoudt, K. C. Cadmium uptake and toxicity via voltage-sensitive calcium channels. J. Biol. Chem. 262, 16333–16337 (1987).

    CAS  Google Scholar 

  29. Rashed, M. N. Cadmium and lead levels in fish (Tilapia nilotica) tissues as biological indicator for lake water pollution. Environ. Monit. Assess. 68, 75–89 (2001).

    Article  CAS  Google Scholar 

  30. Nakanishi, H. et al. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature 460, 371–375 (2009).

    Article  CAS  Google Scholar 

  31. DeVries, G. A. et al. Divalent metal nanoparticles. Science 315, 358–361 (2007).

    Article  CAS  Google Scholar 

  32. Jackson, A. M., Myerson, J. W. & Stellacci, F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nature Mater. 3, 330–336 (2004).

    Article  CAS  Google Scholar 

  33. Witt, D., Klajn, R., Barski, P. & Grzybowski, B. A. Applications properties and synthesis of omega-functionalized n-alkanethiols and disulfides—the building blocks of self-assembled monolayers. Curr. Org. Chem. 8, 1763–1797 (2004).

    Article  CAS  Google Scholar 

  34. Kowalczyk, B., Apodaca, M. M., Nakanishi, H., Smoukov, S. K. & Grzybowski, B. A. Lift-Off and micropatterning of mono- and multilayer nanoparticle films. Small 5, 1970–1973 (2009).

    Article  CAS  Google Scholar 

  35. Klajn, R., Bishop, K. J. M. & Grzybowski, B. A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl Acad. Sci. USA 104, 10305–10309 (2007).

    Article  CAS  Google Scholar 

  36. Kowalczyk, B., Lagzi, I. & Grzybowski, B. A. Nanoarmoured droplets of different shapes formed by interfacial self-assembly and crosslinking of metal nanoparticles. Nanoscale 2, 2366–2369 (2010).

    Article  CAS  Google Scholar 

  37. Han, S. B. et al. Chromatography in a single metal-organic framework (MOF) crystal. J. Am. Chem. Soc. 132, 16358–16361 (2010).

    Article  CAS  Google Scholar 

  38. Sullivan, K. A. & Mason, R. P. The concentration and distribution of mercury in Lake Michigan. Sci. Total Environ. 213, 213–228 (1998).

    Article  CAS  Google Scholar 

  39. Jackson, B., Taylor, V., Baker, R. A. & Miller, E. Low-level mercury speciation in fresh waters by isotope dilution GC-ICP-MS. Environ. Sci. Technol. 43, 2463–2469 (2009).

    Article  CAS  Google Scholar 

  40. Pople, J. & Beveridge, D. Approximate Molecular Orbital Theory (McGraw-Hill, 1970).

    Google Scholar 

  41. Stewart, J. J. P. Stewart Computational Chemistry (Colorado Springs, 2007).

    Google Scholar 

  42. Nitzan, A. Chemical Dynamics in Condensed Phases : Relaxation, Transfer and Reactions in Condensed Molecular Systems Ch. 16 (Oxford, 2006).

    Google Scholar 

  43. Burlakov, V. M. et al. Discrete hopping model of exciton transport in disordered media. Phys. Rev. B 72, 075206 (2005).

    Article  Google Scholar 

  44. Holmlin, R. E. et al. Electron transport through thin organic films in metal-insulator-metal junctions based on self-assembled monolayers. J. Am. Chem. Soc. 123, 5075–5085 (2001).

    Article  CAS  Google Scholar 

  45. Landauer, R. The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23, 779–784 (1952).

    Article  CAS  Google Scholar 

  46. Kirkpatr, S. Classical transport in disordered media—scaling and effective-medium theories. Phys. Rev. Lett. 27, 1722–1725 (1971).

    Article  Google Scholar 

  47. Sips, R. On the structure of a catalyst surface. J. Chem. Phys. 16, 490–495 (1948).

    Article  CAS  Google Scholar 

  48. Kumar, K. V. & Porkodi, K. Relation between some two- and three-parameter isotherm models for the sorption of methylene blue onto lemon peel. J. Hazard. Mater. 138, 633–635 (2006).

    Article  CAS  Google Scholar 

  49. Hristovski, K., Baumgardner, A. & Westerhoff, P. Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: From nanopowders to aggregated nanoparticle media. J. Hazard. Mater. 147, 265–274 (2007).

    Article  CAS  Google Scholar 

  50. Vijayendran, R. A. & Leckband, D. E. A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal. Chem. 73, 471–480 (2001).

    Article  CAS  Google Scholar 

  51. Verma, A. et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nature Mater. 7, 588–595 (2008).

    Article  CAS  Google Scholar 

  52. Jackson, A. M., Hu, Y., Silva, P. J. & Stellacci, F. From homoligand- to mixed-ligand-monolayer-protected metal nanoparticles: A scanning tunneling microscopy investigation. J. Am. Chem. Soc. 128, 11135–11149 (2006).

    Article  CAS  Google Scholar 

  53. Kuna, J. J. et al. The effect of nanometre-scale structure on interfacial energy. Nature Mater. 8, 837–842 (2009).

    Article  CAS  Google Scholar 

  54. Centrone, A. et al. The role of nanostructure in the wetting behavior of mixed-monolayer-protected metal nanoparticles. Proc. Natl Acad. Sci. USA 105, 9886–9891 (2008).

    Article  CAS  Google Scholar 

  55. Zabet-Khosousi, A. & Dhirani, A. A. Charge transport in nanoparticle assemblies. Chem. Rev. 108, 4072–4124 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Non-equilibrium Energy Research Center, which is an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under grant number DE-SC0000989. E.S.C. and F.S. acknowledge the support of ENI within the MIT Energy initiative for their work. E.S.C. is supported by a Samsung Scholarship from the Samsung Foundation of Culture. H.J., S.C.G. and F.S. acknowledge support from the Defense Threat Reduction Agency under Grant No. HDTRA1-09-1-0012. T.M.H. is financially supported by the Human Frontier Science Program. We acknowledge L. Meda for her X-ray photoelectron spectroscopy measurements, and R. Borrelli and P. Cesti for helpful discussions. We also thank the USGS for providing fish samples and for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

E.S.C. synthesized the striped nanoparticles, performed all of their characterization before and after binding to ions, and helped with some of the solid-state work.; J.K. made and characterized all sensors, performed cation capture experiments, measured the conductivities of all sensors and analysed data; B.T. developed quantum-mechanical models and ran quantum-mechanical calculations; T.M.H. developed and validated the binding/percolation models; H.J. ran and analysed MD simulations; S.C.G. analysed and supervised the MD simulations; H.N. performed initial experiments with NP films; M.Y. performed the STM characterization of the particles; A.Z.P. helped with the theory of percolation phenomena; F.S. and B.A.G. conceived the ideas and supervised the research.

Corresponding authors

Correspondence to Francesco Stellacci or Bartosz A. Grzybowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2196 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, E., Kim, J., Tejerina, B. et al. Ultrasensitive detection of toxic cations through changes in the tunnelling current across films of striped nanoparticles. Nature Mater 11, 978–985 (2012). https://doi.org/10.1038/nmat3406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing