Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure and binding mode of citrate in the stabilization of gold nanoparticles

Abstract

Elucidating the binding mode of carboxylate-containing ligands to gold nanoparticles (AuNPs) is crucial to understand their stabilizing role. A detailed picture of the three-dimensional structure and coordination modes of citrate, acetate, succinate and glutarate to AuNPs is obtained by 13C and 23Na solid-state NMR in combination with computational modelling and electron microscopy. The binding between the carboxylates and the AuNP surface is found to occur in three different modes. These three modes are simultaneously present at low citrate to gold ratios, while a monocarboxylate monodentate (1κO1) mode is favoured at high citrate:gold ratios. The surface AuNP atoms are found to be predominantly in the zero oxidation state after citrate coordination, although trace amounts of Auδ+ are observed. 23Na NMR experiments show that Na+ ions are present near the gold surface, indicating that carboxylate binding occurs as a 2e L-type interaction for each oxygen atom involved. This approach has broad potential to probe the binding of a variety of ligands to metal nanoparticles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gold nanoparticle diameter distributions and particle morphology.
Figure 2: 13C and 23Na nuclear magnetic resonance spectra and assignment of 13C NMR signals to citrate binding motifs.
Figure 3: DFT-optimized ligand geometries, binding energies and strain energies on Au(100) and Au(111) model surfaces.

Similar content being viewed by others

References

  1. Faraday, M. The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lon. A 147, 145–181 (1857).

    Article  Google Scholar 

  2. Haruta, M., Kobayashi, T., Sano, H. & Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 16, 405–408 (1987).

    Article  Google Scholar 

  3. Hashmi, A. S. K. & Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed. 45, 7896–7936 (2006).

    Article  Google Scholar 

  4. Li, N., Zhao, P. & Astruc, D. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 53, 1756–1789 (2014).

    Article  CAS  Google Scholar 

  5. Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).

    Article  CAS  Google Scholar 

  6. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008).

    Article  CAS  Google Scholar 

  7. Saha, K., Agasti, S. S., Kim, C., Li, X. & Rotello, V. M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2012).

    Article  CAS  Google Scholar 

  8. Turkevich, J. Colloidal gold. part I. Historical and preparative aspects, morphology and structure. Gold Bull. 18, 86–91 (1985).

    Google Scholar 

  9. Dávila-Ibáñez, A. B. & Salgueiriño, V. Chemical and kinetically controllable nucleation, aggregation-coalescence, and ostwald ripening processes in the synthesis of magnetic Co–B nanoparticles. J. Phys. Chem. C 117, 4859–4865 (2013).

    Article  Google Scholar 

  10. Mpourmpakis, G. & Vlachos, D. G. Growth mechanisms of metal nanoparticles via first principles. Phys. Rev. Lett. 102, 155505 (2009).

    Article  Google Scholar 

  11. Abdukayum, A., Chen, J.-T., Zhao, Q. & Yan, X.-P. Functional near infrared-emitting Cr3+/Pr3+ Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 135, 14125–14133 (2013).

    Article  CAS  Google Scholar 

  12. Tian, Z. R. et al. Complex and oriented ZnO nanostructures. Nat. Mat. 2, 821–826 (2003).

    Article  CAS  Google Scholar 

  13. Ojea-Jiménez, I. & Campanera, J. M. Molecular modeling of the reduction mechanism in the citrate-mediated synthesis of gold nanoparticles. J. Phys. Chem. C 116, 23682–23691 (2012).

    Article  Google Scholar 

  14. Shiba, F. Size control of monodisperse Au nanoparticles synthesized via a citrate reduction process associated with a pH-shifting procedure. Cryst. Eng. Comm. 15, 8412–8415 (2013).

    Article  CAS  Google Scholar 

  15. Turkevich, J., Stevenson, P. C. & Hillier, J. The formation of colloidal gold. J. Phys. Chem. 57, 670–673 (1953).

    Article  CAS  Google Scholar 

  16. Polte, J. et al. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J. Am. Chem. Soc. 132, 1296–1301 (2010).

    Article  CAS  Google Scholar 

  17. Kumar, S., Gandhi, K. S. & Kumar, R. Modeling of formation of gold nanoparticles by citrate method. Ind. Eng. Chem. Res. 46, 3128–3136 (2007).

    Article  CAS  Google Scholar 

  18. Biggs, S., Mulvaney, P., Zukoski, C. F. & Grieser, F. Study of anion adsorption at the gold-aqueous solution interface by atomic-force microscopy. J. Am. Chem. Soc. 116, 9150–9157 (1994).

    Article  CAS  Google Scholar 

  19. Lin, Y. et al. Study of citrate adsorbed on the Au(111) surface by scanning probe microscopy. Langmuir 19, 10000–10003 (2003).

    Article  CAS  Google Scholar 

  20. Park, J.-W. & Shumaker-Parry, J. S. Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles. J. Am. Chem. Soc. 136, 1907–1921 (2014).

    Article  CAS  Google Scholar 

  21. Wulandari, P. et al. Coordination of carboxylate on metal nanoparticles characterized by Fourier transform infrared spectroscopy. Chem. Lett. 37, 888–889 (2008).

    Article  CAS  Google Scholar 

  22. Park, J.-W. & Schumaker-Parry, J. S. Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization. ACS Nano. 9, 1665–1682 (2015).

    Article  CAS  Google Scholar 

  23. Kunze, J., Burgess, I., Nichols, R., Buess-Herman, C. & Lipkowski, J. Electrochemical evaluation of citrate adsorption on Au(111) and the stability of citrate-reduced gold colloids. J. Electroanal. Chem. 599, 147–159 (2007).

    Article  CAS  Google Scholar 

  24. Piella, J., Bastús, N. G. & Puntes, V. Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem. Mater. 28, 1066–1075 (2016).

    Article  CAS  Google Scholar 

  25. Floate, S. et al. An in-situ infrared spectroscopic study of the adsorption of citrate on Au(111) electrodes. J. Electroanal. Chem. 542, 67–74 (2003).

    Article  CAS  Google Scholar 

  26. Marbella, L. E. & Millstone, J. E. NMR techniques for nobel metal nanoparticles. Chem. Mater. 27, 2721–2739 (2015).

    Article  CAS  Google Scholar 

  27. Badia, A. et al. Structure and chain dynamics of alkanethiol-capped gold colloids. Langmuir 12, 1262–1269 (1996).

    Article  CAS  Google Scholar 

  28. Abraham, A., Mihaliuk, E., Kumar, B., Legleiter, J. & Gullion, T. Solid-state NMR study of cysteine on gold nanoparticles. J. Phys. Chem. C 114, 18109–18114 (2010).

    Article  CAS  Google Scholar 

  29. Sharma, R., Taylor, R. E. & Bouchard, L.-S. Intramolecular ligand dynamics in d15-(PPh3)-capped gold nanoparticles investigated by 2H NMR. J. Phys. Chem. C 115, 3297–3303 (2011).

    Article  CAS  Google Scholar 

  30. Marbella, L. E., Crawford, S. E., Hartmann, M. J. & Millstone, J. E. Observation of uniform ligand environments and 31P–197Au coupling in phosphine-terminated Au nanoparticles. Chem. Commun. 52, 9020–9023 (2016).

    Article  CAS  Google Scholar 

  31. Rodríguez-Castillo, M. et al. Reactivity of gold nanoparticles towards N-heterocyclic carbenes. Dalton Trans. 43, 5978–5982 (2014).

    Article  Google Scholar 

  32. Crudden, C. M. et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat. Chem. 6, 409–414 (2014).

    Article  CAS  Google Scholar 

  33. Dorris, A., Rucareanu, S., Reven, L., Barrett, C. J. & Lennox, R. B. Preparation and characterization of polyelectrolyte-coated gold nanoparticles. Langmuir 24, 2532–2538 (2008).

    Article  CAS  Google Scholar 

  34. Sachleben, J. R., Colvin, V., Emsley, L., Wooten, E. W. & Alivisatos, A. P. Solution-state NMR studies of the surface structure and dynamics of semiconductor nanocrystals. J. Phys. Chem. B 102, 10117–10128 (1998).

    Article  CAS  Google Scholar 

  35. Doyen, M., Bartik, K. & Bruylants, G. UVb–Vis and NMR study of the formation of gold nanoparticles by citrate reduction: observation of gold–citrate aggregates. J. Colloid Interface Sci. 399, 1–5 (2013).

    Article  CAS  Google Scholar 

  36. Delgado, J. M., Berná, A., Orts, J. M., Rodes, A. & Feliu, J. M. In situ infrared study of the adsorption and surface acid−base properties of the anions of dicarboxylic acids at gold single crystal and thin-film electrodes. J. Phys. Chem. C 111, 9943–9952 (2007).

    Article  CAS  Google Scholar 

  37. Provorse, M. R. & Aikens, C. M. Binding of carboxylates to gold nanoparticles: a theoretical study of the adsorption of formate on Au20 . Comp. Theor. Chem. 987, 16–21 (2012).

    Article  CAS  Google Scholar 

  38. Yoon, B., Häkkinen, H. & Landman, U. Interaction of O2 with gold clusters: molecular and dissociative adsorption. J. Phys. Chem. A 107, 4066–4071 (2003).

    Article  CAS  Google Scholar 

  39. Berná, A., Delgado, J. M., Orts, J. M., Rodes, A. & Feliu, J. M. Spectroelectrochemical study of the adsorption of acetate anions at gold single crystal and thin-film electrodes. Electrochim. Acta 53, 2309–2321 (2008).

    Article  Google Scholar 

  40. Campbell, C. T. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. Acc. Chem. Res. 46, 1712–1719 (2013).

    Article  CAS  Google Scholar 

  41. Green, M. L. H. A new approach to the formal classification of covalent compounds of the elements. J. Organomet. Chem. 500, 127–148 (1995).

    Article  CAS  Google Scholar 

  42. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. & Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 801–802 (1994).

  43. Suh, I.-K., Ohta, H. & Waseda, Y. High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction. J. Mater. Sci. 23, 757–760 (1988).

    Article  CAS  Google Scholar 

  44. Doniach, S. & Šunjić, M. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. C Solid State Phys. 3, 285–291 (1970).

    Article  Google Scholar 

  45. Baron, M., Bondarchuk, O., Stacchiola, D., Shaikhutdinov, S. & Freund, H.-J. Interaction of gold with cerium oxide supports: CeO2(111) thin films vs CeOx nanoparticles. J. Phys. Chem. C 113, 6042–6049 (2009).

    Article  CAS  Google Scholar 

  46. Ertas, G., Korcan Demirok, U. & Suzer, S. Enhanced peak separation in XPS with external biasing. Appl. Surf. Sci. 249, 12–15 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received support from the King Abdullah University of Science and Technology (KAUST) and ERC Advanced Grant No. 320860. For computer time, this research used the resources of the Supercomputing Laboratory at King Abdullah University of Science & Technology (KAUST) in Thuwal, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

H.A.J. prepared the nanoparticles, and participated in analytical data collection and analysis; E.A.H. collected and analysed solid-state NMR data; A.J. carried out DFT calculations; C.M.W. carried out DFT calculations, analysed data from all techniques, and wrote the paper; J.V.G. recorded and analysed 23Na NMR data and wrote the paper; S.S.S. recorded XPS data; D.G. recorded and analysed low-temperature NMR data; D.H.A. and S.O.C. did the TEM measurements and analysis; M.N.H. recorded and analysed XPS data; A.G. acquired solid-state NMR data; M.J.K. acquired and analysed X-ray diffraction data; M.E.E. synthesized the AuNPs and coordinated their analysis; L.C. supervised and carried out DFT calculations, analysed the data and wrote the paper; L.E. conceived the study, supervised the solid-state NMR spectroscopy and chemical shift calculations, analysed the data and wrote the paper; J.M.B. conceived the study, supervised the preparation and analysis of the AuNPs, analysed the data and wrote the paper.

Corresponding authors

Correspondence to Mohamad El Eter, Luigi Cavallo, Lyndon Emsley or Jean-Marie Basset.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 14310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Johani, H., Abou-Hamad, E., Jedidi, A. et al. The structure and binding mode of citrate in the stabilization of gold nanoparticles. Nature Chem 9, 890–895 (2017). https://doi.org/10.1038/nchem.2752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2752

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing