Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Starch content and yield increase as a result of altering adenylate pools in transgenic plants

Abstract

Starch represents the most important carbohydrate used for food and feed purposes. With the aim of increasing starch content, we decided to modulate the adenylate pool by changing the activity of the plastidial adenylate kinase in transgenic potato plants. As a result, we observed a substantial increase in the level of adenylates and, most importantly, an increase in the level of starch to 60% above that found in wild-type plants. In addition, concentrations of several amino acids were increased by a factor of 2–4. These results are particularly striking because this genetic manipulation also results in an increased tuber yield. The modulation of the plastidial adenylate kinase activity in transgenic plants therefore represents a potentially very useful strategy for increasing formation of major storage compounds in heterotrophic tissues of higher plants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization and expression of potato plastidial adenylate kinase.
Figure 2: Adenylate content of transgenic lines.
Figure 3: Starch content of transgenic lines.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kossmann, J. & Lloyd, J. Understanding and influencing starch biochemistry. Crit. Rev. Plant Sci. 19, 171–226 (2000).

    Article  CAS  Google Scholar 

  2. Slattery, C.J., Kavakli, I.H. & Okita, T.W. Engineering starch for increased quantity and quality. Trends Plant Sci. 5, 291–298 (2000).

    Article  CAS  Google Scholar 

  3. Martin, C. & Smith, A.M. Starch biosynthesis. Plant Cell 7, 971–985 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Smith, A.M., Denyer, K. & Martin, C. The synthesis of the starch granule. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 65–87 (1997).

    Article  Google Scholar 

  5. Sonnewald, U. et al. Expression of a yeast invertase in the apoplast of potato tubers increases tuber size. Nat. Biotechnol. 15, 794–797 (1997).

    Article  CAS  Google Scholar 

  6. Trethewey, R.N. et al. Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis. Plant J. 15, 109–118 (1998).

    Article  CAS  Google Scholar 

  7. Trethewey R.N. et al. Expression of a bacterial sucrose phosphorylase in potato tubers results in a glucose-independent induction of glycolysis. Plant Cell Environ. 24, 357–365 (2001).

    Article  CAS  Google Scholar 

  8. Stark, D.M., Timmermann, K.P., Barry, G.F., Preiss, J. & Kishore, G.M. Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science 258, 287–292 (1992).

    Article  CAS  Google Scholar 

  9. Sweetlove, L.J., Burrell, M.M. & ap Rees, T. Starch metabolism in tubers of transgenic potato (Solanum tuberosum) with increased ADP glucose pyrophosphorylase. Biochem. J. 320, 493–498 (1996).

    Article  CAS  Google Scholar 

  10. Giroux, M.J. et al. A single gene mutation that increases maize seed weight. Proc. Natl. Acad. Sci. USA 93, 5823–5829 (1996).

    Article  Google Scholar 

  11. Tjaden, J., Möhlmann, T., Kampfenkel, K., Henrichs, G. & Neuhaus, H.E. Altered plastidic ATP/ADP-transporter activity influences potato (Solanum tuberosum L.) tuber morphology, yield and composition of tuber starch. Plant J. 16, 531–540 (1998).

    Article  CAS  Google Scholar 

  12. Loef, I., Stitt, M. & Geigenberger, P. Increased adenine nucleotide levels modify the interaction between respiration and starch synthesis when adenine is fed to discs of growing potato tubers. Planta 212, 782–791 (2001).

    Article  CAS  Google Scholar 

  13. Noda, L.H. Adenylate kinase. in The Enzymes Vol. VIII. Group Transfer Pt. A (ed. Bowyer, P. D.) 279–305 (Academic Press, New York, 1973).

    Google Scholar 

  14. Kossmann, J., Visser, R.G.F., Müller-Röber, B., Willmitzer, L. & Sonnewald, U. Cloning and expression of a potato cDNA that encodes branching enzyme: evidence for co-expression of starch biosynthetic genes. Mol. Gen. Genet. 230, 39–44 (1992).

    Article  Google Scholar 

  15. Shen, B. et al. Partial sequencing and mapping of clones from two maize cDNA libraries. Plant Mol. Biol. 26, 1085–1101 (1994).

    Article  CAS  Google Scholar 

  16. Kawai, M., Kidou, S., Kato, A. & Uchimiya, H. Molecular characterisation of cDNA encoding for adenylate kinase of rice (Oryza sativa L.). Plant J. 2, 845–854 (1992).

    CAS  PubMed  Google Scholar 

  17. Gavel, Y. & von Heijne, G. A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett. 261, 455–458 (1990).

    Article  CAS  Google Scholar 

  18. Atkinson, D.E. Cellular Energy Metabolism and Its Regulation (Academic Press, New York, 1977).

    Google Scholar 

  19. Roessner, U. et al. Metabolic profiling allows comprehensive phenotyping of genetically and environmentally modified plant systems. Plant Cell 13, 11–29 (2001).

    Article  CAS  Google Scholar 

  20. Chakraborty, S., Chakraborty, N. & Datta, A. Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc. Natl. Acad. Sci. USA 97, 3724–3729 (2000).

    Article  CAS  Google Scholar 

  21. Tabe, L. & Higgins, T.J.V. Engineering plant protein composition for improved nutrition. Trends Plant Sci. 3, 282–286 (1998).

    Article  Google Scholar 

  22. Galili, G. Regulation of lysine and threonine synthesis. Plant Cell 7, 899–906 (1995).

    Article  CAS  Google Scholar 

  23. Konrad, M. Analysis and in vivo disruption of the gene coding for adenylate kinase (ADK1) in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 263, 19468–19474 (1988).

    CAS  PubMed  Google Scholar 

  24. Konrad, M. Molecular analysis of the essential gene for adenylate kinase from the fission yeast Schizosaccharomyces pombe. J. Biol. Chem. 268, 11326–11334 (1993).

    CAS  PubMed  Google Scholar 

  25. Foury, F. Human genetic diseases: a cross-talk between man and yeast. Gene 195, 1–10 (1997).

    Article  CAS  Google Scholar 

  26. Kleczkowski, L.A. & Randall, D.D. Maize leaf adenylate kinase: purification and partial characterisation. Plant Physiol. 81, 1110–1114 (1986).

    Article  CAS  Google Scholar 

  27. Tauberger, E. et al. Antisense inhibition of plastidial phosphoglucomutase provides compelling evidence that potato tuber amyloplasts import carbon from the cytosol in the form of glucose-6-phosphate. Plant J. 23, 43–53 (2000).

    Article  CAS  Google Scholar 

  28. Shiltz, E. et al. Primary structure of maize chloroplast adenylate kinase. Eur. J. Biochem. 222, 949–954 (1994).

    Article  Google Scholar 

  29. Liu, X.J., Prat, S., Willmitzer, L. & Frommer, W.B. Cis regulatory elements directing tuber-specific and sucrose-inducible expression of a chimeric class I patatin promoter–GUS gene fusion. Mol. Gen. Genet. 223, 401–406 (1999).

    Article  Google Scholar 

  30. Dietze, J., Blau, A. & Willmitzer, L. Agrobacterium-mediated transformation of potato (Solanum tuberosum). in Gene Transfer to Plants Vol. xxii (eds Potrykus, I. & Spangenberg, G.) 24–29 (Springer-Verlag, Berlin, 1995).

    Chapter  Google Scholar 

  31. Logemann, J., Schell, J. & Willmitzer, L. Improved method for the isolation of RNA from plant tissues. Ann. Biochem. 163, 16–20 (1987).

    Article  CAS  Google Scholar 

  32. Geigenberger, P. et al. Overexpression of pyrophosphatase leads to increased sucrose degradation and starch synthesis, increased activities for sucrose–starch interconversions, and increased levels of nucleotides in growing potato tubers. Planta 205, 428–437 (1998).

    Article  CAS  Google Scholar 

  33. Geigenberger, P. et al. Phloem-specific expression of pyrophosphatase inhibits long-distance transport of carbohydrates and amino acids in tobacco plants. Plant Cell Environ. 19, 43–55 (1996).

    Article  CAS  Google Scholar 

  34. Fernie, A.R. et al. The contribution of plastidial phosphoglucomutase to the control of starch synthesis within the potato tuber. Planta 213, 418–426 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisdair R. Fernie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regierer, B., Fernie, A., Springer, F. et al. Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nat Biotechnol 20, 1256–1260 (2002). https://doi.org/10.1038/nbt760

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt760

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing