Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination

Abstract

The pathogenic sequelae of BRCA1 mutation in human and mouse cells are mitigated by concomitant deletion of 53BP1, which binds histone H4 dimethylated at Lys20 (H4K20me2) to promote nonhomologous end joining, suggesting that a balance between BRCA1 and 53BP1 regulates DNA double strand–break (DSB) repair mechanism choice. Here we document that acetylation is a key determinant of this balance. TIP60 acetyltransferase deficiency reduced BRCA1 at DSB chromatin with commensurate increases in 53BP1, whereas HDAC inhibition yielded the opposite effect. TIP60-dependent H4 acetylation diminished 53BP1 binding to H4K20me2 in part through disruption of a salt bridge between H4K16 and Glu1551 in the 53BP1 Tudor domain. Moreover, TIP60 deficiency impaired homologous recombination and conferred sensitivity to PARP inhibition in a 53BP1-dependent manner. These findings demonstrate that acetylation in cis to H4K20me2 regulates relative BRCA1 and 53BP1 DSB chromatin occupancy to direct DNA repair mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TIP60 and HDAC inhibition differentially affect competition between BRCA1 and 53BP1 for localization to DSBs.
Figure 2: DNA damage– and transcription–dependent acetylation regulates BRCA1 and 53BP1 DSB occupancy.
Figure 3: Histone H4K16 acetylation impairs the interaction of the 53BP1 Tudor domain with H4K20me2.
Figure 4: Solution structure of 53BP1-Tudor in association with a methylated H4 peptide.
Figure 5: 53BP1 knockdown restores BRCA1 localization to DSBs.
Figure 6: HDACi or 53BP1 deficiency restores end resection and homology-directed DSB repair in TIP60-deficient cells.
Figure 7: 53BP1 promotes genomic instability and sensitivity to PARPi in the absence of TIP60.

Similar content being viewed by others

Accession codes

Primary accessions

Biological Magnetic Resonance Data Bank

Protein Data Bank

References

  1. Bunting, S.F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17, 688–695 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chapman, J.R., Taylor, M.R. & Boulton, S.J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497–510 (2012).

    CAS  PubMed  Google Scholar 

  4. Xu, X. et al. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat. Genet. 28, 266–271 (2001).

    CAS  PubMed  Google Scholar 

  5. Botuyan, M.V. et al. Structural basis for the methylation state-specific recognition of histone H4–K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Oda, H. et al. Regulation of the histone H4 monomethylase PR-Set7 by CRL4(Cdt2)-mediated PCNA-dependent degradation during DNA damage. Mol. Cell 40, 364–376 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanders, S.L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119, 603–614 (2004).

    CAS  PubMed  Google Scholar 

  8. Bothmer, A. et al. Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1. Mol. Cell 42, 319–329 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tripathi, V., Nagarjuna, T. & Sengupta, S. BLM helicase-dependent and -independent roles of 53BP1 during replication stress-mediated homologous recombination. J. Cell Biol. 178, 9–14 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131, 887–900 (2007).

    CAS  PubMed  Google Scholar 

  11. Doil, C. et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136, 435–446 (2009).

    CAS  Google Scholar 

  12. Stewart, G.S. et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136, 420–434 (2009).

    CAS  Google Scholar 

  13. Kolas, N.K. et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318, 1637–1640 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Huen, M.S. et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131, 901–914 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sobhian, B. et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316, 1198–1202 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, B. et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316, 1194–1198 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, H., Chen, J. & Yu, X. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316, 1202–1205 (2007).

    CAS  PubMed  Google Scholar 

  18. Livingston, D.M. Cancer. Complicated supercomplexes. Science 324, 602–603 (2009).

    CAS  PubMed  Google Scholar 

  19. Messick, T.E. & Greenberg, R.A. The ubiquitin landscape at DNA double-strand breaks. J. Cell Biol. 187, 319–326 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, M.L. & Greenberg, R.A. Links between genome integrity and BRCA1 tumor suppression. Trends Biochem. Sci. 37, 418–424 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gudjonsson, T. et al. TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell 150, 697–709 (2012).

    CAS  Google Scholar 

  22. Poulsen, M., Lukas, C., Lukas, J., Bekker-Jensen, S. & Mailand, N. Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks. J. Cell Biol. 197, 189–199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Acs, K. et al. The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks. Nat. Struct. Mol. Biol. 18, 1345–1350 (2011).

    CAS  PubMed  Google Scholar 

  24. Mallette, F.A. et al. RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J. 31, 1865–1878 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411 (2004).

    CAS  PubMed  Google Scholar 

  26. Murr, R. et al. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat. Cell Biol. 8, 91–99 (2006).

    CAS  PubMed  Google Scholar 

  27. Ikura, T. et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463–473 (2000).

    CAS  PubMed  Google Scholar 

  28. Jha, S., Shibata, E. & Dutta, A. Human Rvb1/Tip49 is required for the histone acetyltransferase activity of Tip60/NuA4 and for the downregulation of phosphorylation on H2AX after DNA damage. Mol. Cell Biol. 28, 2690–2700 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Utley, R.T., Lacoste, N., Jobin-Robitaille, O., Allard, S. & Cote, J. Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol. Cell. Biol. 25, 8179–8190 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shanbhag, N.M., Rafalska-Metcalf, I.U., Balane-Bolivar, C., Janicki, S.M. & Greenberg, R.A. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141, 970–981 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fujita, P.A. et al. The UCSC Genome Browser database: update 2011. Nucleic Acids Res. 39, D876–D882 (2011).

    CAS  PubMed  Google Scholar 

  32. Tamburini, B.A. & Tyler, J.K. Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol. Cell Biol. 25, 4903–4913 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Janicki, S.M. et al. From silencing to gene expression: real-time analysis in single cells. Cell 116, 683–698 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pesavento, J.J., Yang, H., Kelleher, N.L. & Mizzen, C.A. Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol. Cell Biol. 28, 468–486 (2008).

    CAS  PubMed  Google Scholar 

  35. Cui, G., Botuyan, M.V. & Mer, G. Preparation of recombinant peptides with site- and degree-specific lysine (13)C-methylation. Biochemistry 48, 3798–3800 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Moynahan, M.E., Chiu, J.W., Koller, B.H. & Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell 4, 511–518 (1999).

    CAS  PubMed  Google Scholar 

  37. Chen, L., Nievera, C.J., Lee, A.Y. & Wu, X. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J. Biol. Chem. 283, 7713–7720 (2008).

    CAS  PubMed  Google Scholar 

  38. Yun, M.H. & Hiom, K. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 459, 460–463 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    CAS  PubMed  Google Scholar 

  40. Bryant, H.E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    CAS  PubMed  Google Scholar 

  41. Dimitrova, N., Chen, Y.C., Spector, D.L. & de Lange, T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456, 524–528 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ward, I.M. et al. 53BP1 is required for class switch recombination. J. Cell Biol. 165, 459–464 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Manis, J.P. et al. 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nat. Immunol. 5, 481–487 (2004).

    CAS  PubMed  Google Scholar 

  44. Kuo, A.J. et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature 484, 115–119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    CAS  PubMed  Google Scholar 

  46. Shogren-Knaak, M. et al. Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    CAS  PubMed  Google Scholar 

  47. Miller, K.M. et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat. Struct. Mol. Biol. 17, 1144–1151 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chapman, J.R., Sossick, A.J., Boulton, S.J. & Jackson, S.P. BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair. J. Cell Sci. 125, 3529–3534 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fong, P.C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    CAS  PubMed  Google Scholar 

  50. Fraga, M.F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37, 391–400 (2005).

    CAS  PubMed  Google Scholar 

  51. Gorrini, C. et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448, 1063–1067 (2007).

    CAS  PubMed  Google Scholar 

  52. Wolf, E. et al. Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell 94, 439–449 (1998).

    CAS  PubMed  Google Scholar 

  53. Simon, M.D. et al. The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128, 1003–1012 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Güntert, P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378 (2004).

    PubMed  Google Scholar 

  55. Case, D.A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    CAS  PubMed  Google Scholar 

  57. Delano, W.F. The PyMOL Molecular Graphics System, version 1.3r1 (Schrodinger, LLC, New York, 2010).

Download references

Acknowledgements

We thank J. Wu for technical support, J. Chen (MD Anderson Cancer Center) for 53BP1−/− mouse embryonic fibroblasts, M. Jasin (Memorial Sloan-Kettering Cancer Center) for U2OS DR-GFP reporter cells, G. Stewart (University of Birmingham) for RIDDLE cells and S. Janicki (Wistar Institute) and D. Spector (Cold Spring Harbor Laboratories) for the U2OS 2-6-3 reporter cell line. We thank K.M. Miller (University of Texas) and A. Sfeir (New York University) for their critical reading of the manuscript and helpful comments. R.A.G. is supported by grant 1R01CA138835-01 from the National Cancer Institute (NCI), a Research Scholar Grant from the American Cancer Society, a Department of Defense Breast Cancer Idea Award, a UPENN–Fox Chase Cancer Center (FCCC) Specialized Program of Research Excellence (SPORE) Pilot Grant and funds from the Abramson Family Cancer Research Institute and Basser Research Center for BRCA. G.M. acknowledges support from NCI grant 1R01CA132878 and funds from the Mayo Clinic Breast Cancer SPORE NCI grant P50CA116201.

Author information

Authors and Affiliations

Authors

Contributions

J.T. initiated the study and performed the majority of experiments with guidance from R.A.G. N.W.C. designed and validated the TRF1-FokI DSB reporter system in conjunction with N.M.S. and R.A.G. E.M.M. provided technical assistance to J.T. G.C. prepared the isotope-enriched proteins and peptides, and performed the NMR spectroscopy experiments and structure calculations. M.V.B. made the protein expression constructs and helped in sample preparations for NMR studies. G.M. supervised the structural studies. The study was conceived by J.T. and R.A.G. Writing was performed by J.T. and R.A.G. with contributions from G.M., N.M.S. and N.W.C.

Corresponding author

Correspondence to Roger A Greenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Note (PDF 2930 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, J., Cho, N., Cui, G. et al. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat Struct Mol Biol 20, 317–325 (2013). https://doi.org/10.1038/nsmb.2499

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2499

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing