Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and regulation of the cAMP-binding domains of Epac2

Abstract

Cyclic adenosine monophosphate (cAMP) is a universal second messenger that, in eukaryotes, was believed to act only on cAMP-dependent protein kinase A (PKA) and cyclic nucleotide-regulated ion channels. Recently, guanine nucleotide exchange factors specific for the small GTP-binding proteins Rap1 and Rap2 (Epacs) were described, which are also activated directly by cAMP. Here, we have determined the three-dimensional structure of the regulatory domain of Epac2, which consists of two cyclic nucleotide monophosphate (cNMP)-binding domains and one DEP (Dishevelled, Egl, Pleckstrin) domain. This is the first structure of a cNMP-binding domain in the absence of ligand, and comparison with previous structures, sequence alignment and biochemical experiments allow us to delineate a mechanism for cyclic nucleotide-mediated conformational change and activation that is most likely conserved for all cNMP-regulated proteins. We identify a hinge region that couples cAMP binding to a conformational change of the C-terminal regions. Mutations in the hinge of Epac can uncouple cAMP binding from its exchange activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of Epac.
Figure 2: Ribbon diagram of the DEP domains of Epac and Dishevelled.
Figure 3: Comparison of cAMP-binding domains of Epac (cAMP-free) and PKAs (cAMP-bound).
Figure 4: Biochemical analysis of the regulation mechanism of Epac.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Bos, J.L., de Rooij, J. & Reedquist, K.A. Rap1 signalling: adhering to new models. Nat. Rev. Mol. Cell. Biol. 2, 369–377 (2001).

    Article  CAS  Google Scholar 

  2. Doskeland, S.O. & Ogreid, D. Binding proteins for cyclic AMP in mammalian tissues. Int. J. Biochem. 13, 1–19 (1981).

    Article  CAS  Google Scholar 

  3. Kaupp, U.B. Family of cyclic nucleotide gated ion channels. Curr. Opin. Neurobiol. 5, 434–442 (1995).

    Article  CAS  Google Scholar 

  4. de Rooij, J. et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474–477 (1998).

    Article  CAS  Google Scholar 

  5. Kawasaki, H. et al. A family of cAMP-binding proteins that directly activate Rap1. Science 282, 2275–2279 (1998).

    Article  CAS  Google Scholar 

  6. de Rooij, J. et al. Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J. Biol. Chem. 275, 20829–20836 (2000).

    Article  CAS  Google Scholar 

  7. Ozaki, N. et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat. Cell Biol. 2, 805–811 (2000).

    Article  CAS  Google Scholar 

  8. Wong, H.C. et al. Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Nat. Struct. Biol. 7, 1178–1184 (2000).

    Article  CAS  Google Scholar 

  9. Su, Y. et al. Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science 269, 807–813 (1995).

    Article  CAS  Google Scholar 

  10. Diller, T.C., Madhusudan, Xuong, N.H. & Taylor, S.S. Molecular basis for regulatory subunit diversity in cAMP-dependent protein kinase: crystal structure of the type II β regulatory subunit. Structure (Camb.) 9, 73–82 (2001).

    Article  CAS  Google Scholar 

  11. Weber, I.T. & Steitz, T.A. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution. J. Mol. Biol. 198, 311–326 (1987).

    Article  CAS  Google Scholar 

  12. Kraemer, A. et al. Dynamic interaction of cAMP with the Rap guanine-nucleotide exchange factor Epac1. J. Mol. Biol. 306, 1167–1177 (2001).

    Article  CAS  Google Scholar 

  13. Huang, L.J. & Taylor, S.S. Dissecting cAMP binding domain A in the RIα subunit of cAMP-dependent protein kinase. Distinct subsites for recognition of cAMP and the catalytic subunit. J. Biol. Chem. 273, 26739–26746 (1998).

    Article  CAS  Google Scholar 

  14. Francis, S.H., Poteet-Smith, C., Busch, J.L., Richie-Jannetta, R. & Corbin, J.D. Mechanisms of autoinhibition in cyclic nucleotide-dependent protein kinases. Front. Biosci. 7, d580–d592 (2002).

    Article  CAS  Google Scholar 

  15. Moore, J.L., Gorshkova, I.I., Brown, J.W., McKenney, K.H. & Schwarz, F.P. Effect of cAMP binding site mutations on the interaction of cAMP receptor protein with cyclic nucleoside monophosphate ligands and DNA. J. Biol. Chem. 271, 21273–21278 (1996).

    Article  CAS  Google Scholar 

  16. Wainger, B.J., De Gennaro, M., Santoro, B., Siegelbaum, S.A. & Tibbs, G.R. Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature 411, 805–810 (2001).

    Article  CAS  Google Scholar 

  17. Bubis, J. & Taylor, S.S. Covalent modification of both cAMP binding sites in cAMP-dependent protein kinase I by 8-azidoadenosine 3′,5′-monophosphate. Biochemistry 24, 2163–2170 (1985).

    Article  CAS  Google Scholar 

  18. Symcox, M.M., Cauthron, R.D., Ogreid, D. & Steinberg, R.A. Arg-242 is necessary for allosteric coupling of cyclic AMP-binding sites A and B of RI subunit of cyclic AMP-dependent protein kinase. J. Biol. Chem. 269, 23025–23031 (1994).

    CAS  PubMed  Google Scholar 

  19. Canaves, J.M. & Taylor, S.S. Classification and phylogenetic analysis of the cAMP-dependent protein kinase regulatory subunit family. J. Mol. Evol. 54, 17–19 (2002).

    Article  CAS  Google Scholar 

  20. Rensland, H. et al. Substrate and product structural requirements for binding of nucleotides to H-ras p21: the mechanism of discrimination between guanosine and adenosine nucleotides. Biochemistry 34, 593–599 (1995).

    Article  CAS  Google Scholar 

  21. Van Haastert, P.J. et al. Competitive cAMP antagonists for cAMP-receptor proteins. J. Biol. Chem. 259, 10020–10024 (1984).

    CAS  PubMed  Google Scholar 

  22. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Acta Crystallogr. A 276, 307–326 (1997).

    CAS  Google Scholar 

  23. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  24. Terwilliger, T.C. & Berendzen, J. Bayesian difference refinement. Acta Crystallogr. D 52, 1004–1011 (1996).

    Article  CAS  Google Scholar 

  25. Weeks, C.M. & Miller, R. Optimizing Shake-and-Bake for proteins. Acta Crystallogr. D 55, 492–500 (1999).

    Article  CAS  Google Scholar 

  26. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Acta Crystallogr. A 276, 472–494 (1997).

    CAS  Google Scholar 

  27. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F-1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  28. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  29. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  30. Kraulis, P.J. MolScript — a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  31. Merrit, E.A. & Murphy, M.E.P. Raster3D version 2.0 — a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank I. Vetter, I. Schlichting, M. Weyand and A. Scheidig for help during data collection and interesting discussions. We thank D. Kuehlmann, C. Koerner and A. Gerhards for excellent technical support, R. Schebaum for secretarial assistance and M. Würtele and M. Hess for help with figure preparation. We thank the staff of ESRF Grenoble, particularly M. Roth, for beam time allocation and assistance with X-ray data collection. H.R. was supported by a grant from the Council of Earth and Life Science of the Netherlands Organization for Scientific Research (NWO-ALW) and B.P. from an HFSP grant to A.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Wittinghofer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehmann, H., Prakash, B., Wolf, E. et al. Structure and regulation of the cAMP-binding domains of Epac2. Nat Struct Mol Biol 10, 26–32 (2003). https://doi.org/10.1038/nsb878

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb878

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing