Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electro-optic sampling of near-infrared waveforms

Abstract

Access to the complete electric field evolution of a laser pulse is essential for attosecond science in general1, and for the scrutiny and control of electron phenomena in solid-state physics specifically2,3,4,5,6. Time-resolved field measurements are routine in the terahertz spectral range, using electro-optic sampling (EOS)7,8,9, photoconductive switches10,11 and field-induced second harmonic generation12,13. EOS in particular features outstanding sensitivity and ease of use, making it the basis of time-resolved spectroscopic measurements14 for studying charge carrier dynamics15,16,17,18,19,20 and active optical devices21. In this Letter, we show that careful optical filtering allows the bandwidth of this technique to be extended to wavelengths as short as 1.2 μm (230 THz) with half-cycle durations 2.3 times shorter than the sampling pulse. In a proof-of-principle application, we measure the influence of optical parametric amplification (OPA) on the electric field dynamics of a few-cycle near-infrared (NIR) pulse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: System layout and representative results.
Figure 2: Sampling pulse spectrum and calculated EOS response functions.
Figure 3: Sampling of high-frequency NIR light.
Figure 4: OPCPA pulse amplification dynamics measured with EOS.

Similar content being viewed by others

References

  1. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  2. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 572, 572–575 (2015).

    Article  ADS  Google Scholar 

  3. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    Article  ADS  Google Scholar 

  4. Kuehn, W. et al. Coherent ballistic motion of electrons in a periodic potential. Phys. Rev. Lett. 104, 146602 (2010).

    Article  ADS  Google Scholar 

  5. Eisele, M. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nature Photon. 8, 841–845 (2014).

    Article  ADS  Google Scholar 

  6. Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photon. 8, 119–123 (2014).

    Article  ADS  Google Scholar 

  7. Wu, Q. & Zhang, X.-C. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 67, 3523–3525 (1995).

    Article  ADS  Google Scholar 

  8. Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M. C. & Knox, W. H. Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory. Appl. Phys. Lett. 74, 1516–1518 (1999).

    Article  ADS  Google Scholar 

  9. Sell, A., Scheu, R., Leitenstorfer, A. & Huber, R. Field-resolved detection of phase-locked infrared transients from a compact Er:fiber system tunable between 55 and 107 THz. Appl. Phys. Lett. 93, 251107 (2008).

    Article  ADS  Google Scholar 

  10. Auston, D. H., Cheung, K. P. & Smith, P. R. Picosecond photoconducting Hertzian dipoles. Appl. Phys. Lett. 45, 284–286 (1984).

    Article  ADS  Google Scholar 

  11. Ashida, M. Ultra-broadband terahertz wave detection using photoconductive antenna. Japan. J. Appl. Phys. 47, 8221–8225 (2008).

    Article  ADS  Google Scholar 

  12. Dai, J., Xie, X. & Zhang, X.-C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Phys. Rev. Lett. 97, 103903 (2006).

    Article  ADS  Google Scholar 

  13. Karpowicz, N. et al. Coherent heterodyne time-domain spectrometry covering the entire ‘terahertz gap’. Appl. Phys. Lett. 92, 011131 (2008).

    Article  ADS  Google Scholar 

  14. Pashkin, A. et al. Femtosecond response of quasiparticles and phonons in superconducting YBa2Cu3O7 studied by wideband terahertz spectroscopy. Phys. Rev. Lett. 105, 067001 (2010).

    Article  ADS  Google Scholar 

  15. Waschke, C. et al. Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice. Phys. Rev. Lett. 70, 3319–3322 (1993).

    Article  ADS  Google Scholar 

  16. Gaal, P. et al. Internal motions of a quasiparticle governing its ultrafast nonlinear response. Nature 450, 1210–1213 (2007).

    Article  ADS  Google Scholar 

  17. Kübler, C. et al. Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2 . Phys. Rev. Lett. 99, 116401 (2007).

    Article  ADS  Google Scholar 

  18. Somma, C., Reimann, K., Flytzanis, C., Elsaesser, T. & Woerner, M. High-field terahertz bulk photovoltaic effect in lithium niobate. Phys. Rev. Lett. 112, 146602 (2014).

    Article  ADS  Google Scholar 

  19. Pashkin, A., Sell, A., Kampfrath, T. & Huber, R. Electric and magnetic terahertz nonlinearities resolved on the sub-cycle scale. New J. Phys. 15, 065003 (2013).

    Article  ADS  Google Scholar 

  20. Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature 414, 286–289 (2001).

    Article  ADS  Google Scholar 

  21. Kröll, J. et al. Phase-resolved measurements of stimulated emission in a laser. Nature 449, 698–701 (2007).

    Article  ADS  Google Scholar 

  22. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  23. Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).

    Article  ADS  Google Scholar 

  24. Kim, K. T. el al. Petahertz optical oscilloscope. Nature Photon. 7, 958–962 (2013).

    Article  ADS  Google Scholar 

  25. Nomura, T., Shirai, H. & Fuji, T. Frequency-resolved optical gating capable of carrier-envelope phase determination. Nature Commun. 4, 2820 (2013).

    Article  ADS  Google Scholar 

  26. Fattahi, H., Schwarz, A., Keiber, S. & Karpowicz, N. Efficient, octave-spanning difference-frequency generation using few-cycle pulses in simple collinear geometry. Opt. Lett. 38, 4216–4218 (2013).

    Article  ADS  Google Scholar 

  27. Porer, M., Ménard, J.-M. & Huber, R. Shot noise reduced terahertz detection via spectrally postfiltered electro-optic sampling. Opt. Lett. 39, 2435–2438 (2014).

    Article  ADS  Google Scholar 

  28. Demmler, S. et al. Control of nonlinear spectral phase induced by ultra-broadband optical parametric amplification. Opt. Lett. 37, 3933–3935 (2012).

    Article  ADS  Google Scholar 

  29. Deng, Y. et al. Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 μm. Opt. Lett. 37, 4973–4975 (2012).

    Article  ADS  Google Scholar 

  30. Metzger, T. et al. High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification. Opt. Lett. 34, 2123–2125 (2009).

    Article  ADS  Google Scholar 

  31. Brabec, T. & Krausz, F. Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett. 78, 3282–3285 (1997).

    Article  ADS  Google Scholar 

  32. Zhang, D., Kong, Y. & Zhang, J. Optical parametric properties of 532-nm-pumped beta-barium-borate near the infrared absorption edge. Opt. Commun. 184, 485–491 (2000).

    Article  ADS  Google Scholar 

  33. Gayer, O., Sacks, Z., Galun, E. & Arie, A. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3 . Appl. Phys. B 91, 343–348 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from LASERLAB-EUROPE (grant agreement no. 284464, the European Commission's Seventh Framework Programme) and the Munich-Centre for Advanced Photonics. S.S. acknowledges financial support from the Banting Postdoctoral Fellowship program.

Author information

Authors and Affiliations

Authors

Contributions

The measurement was performed by S.K., S.S. and N.K. The OPCPA was prepared by A.S., S.K., F.K. and N.K. The specialized multilayer optics were designed and fabricated by M.T. and V.P. The simulations were performed by and the experimental concept was conceived by N.K. All authors reviewed and contributed to the final manuscript.

Corresponding author

Correspondence to Nicholas Karpowicz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keiber, S., Sederberg, S., Schwarz, A. et al. Electro-optic sampling of near-infrared waveforms. Nature Photon 10, 159–162 (2016). https://doi.org/10.1038/nphoton.2015.269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing