Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

A versatile in vivo system for directed dissection of gene expression patterns

Abstract

Tissue-specific gene expression using the upstream activating sequence (UAS)–GAL4 binary system has facilitated genetic dissection of many biological processes in Drosophila melanogaster. Refining GAL4 expression patterns or independently manipulating multiple cell populations using additional binary systems are common experimental goals. To simplify these processes, we developed a convertible genetic platform, the integrase swappable in vivo targeting element (InSITE) system. This approach allows GAL4 to be replaced with any other sequence, placing different genetic effectors under the control of the same regulatory elements. Using InSITE, GAL4 can be replaced with LexA or QF, allowing an expression pattern to be repurposed. GAL4 can also be replaced with GAL80 or split-GAL4 hemi-drivers, allowing intersectional approaches to refine expression patterns. The exchanges occur through efficient in vivo manipulations, making it possible to generate many swaps in parallel. This system is modular, allowing future genetic tools to be easily incorporated into the existing framework.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The InSITE system.
Figure 2: Molecular and genetic validation of the enhancer-trap exchange.
Figure 3: Functional validation of the QF and LexA enhancer trap swaps.
Figure 4: Functional validation of the split-GAL4 and GAL80 enhancer trap swaps.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  2. O'Kane, C.J. & Gehring, W.J. Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl. Acad. Sci. USA 84, 9123–9127 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ejsmont, R.K., Sarov, M., Winkler, S., Lipinski, K.A. & Tomancak, P. A toolkit for high-throughput, cross-species gene engineering in Drosophila. Nat. Methods 6, 435–437 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Pfeiffer, B.D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. USA 105, 9715–9720 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Venken, K.J. et al. Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nat. Methods 6, 431–434 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luo, L., Callaway, E.M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Korzh, V. Transposons as tools for enhancer trap screens in vertebrates. Genome Biol. 8 (Suppl. 1), S8 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stanford, W.L., Cohn, J.B. & Cordes, S.P. Gene-trap mutagenesis: past, present and beyond. Nat. Rev. Genet. 2, 756–768 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Bellen, H.J. Ten years of enhancer detection: lessons from the fly. Plant Cell 11, 2271–2281 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lai, S.L. & Lee, T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat. Neurosci. 9, 703–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Potter, C.J., Tasic, B., Russler, E.V., Liang, L. & Luo, L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141, 536–548 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suster, M.L., Seugnet, L., Bate, M. & Sokolowski, M.B. Refining GAL4-driven transgene expression in Drosophila with a GAL80 enhancer-trap. Genesis 39, 240–245 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Bohm, R.A. et al. A genetic mosaic approach for neural circuit mapping in Drosophila. Proc. Natl. Acad. Sci. USA 107, 16378–16383 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L. & Dickson, B.J. Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Gordon, M.D. & Scott, K. Motor control in a Drosophila taste circuit. Neuron 61, 373–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luan, H., Peabody, N.C., Vinson, C.R. & White, B.H. Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52, 425–436 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Bateman, J.R., Lee, A.M. & Wu, C.T. Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics 173, 769–777 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bischof, J., Maeda, R.K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl. Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Golic, M.M., Rong, Y.S., Petersen, R.B., Lindquist, S.L. & Golic, K.G. FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res. 25, 3665–3671 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Horn, C. & Handler, A.M. Site-specific genomic targeting in Drosophila. Proc. Natl. Acad. Sci. USA 102, 12483–12488 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oberstein, A., Pare, A., Kaplan, L. & Small, S. Site-specific transgenesis by Cre-mediated recombination in Drosophila. Nat. Methods 2, 583–585 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Schlake, T. & Bode, J. Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33, 12746–12751 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Yagi, R., Mayer, F. & Basler, K. Refined LexA transactivators and their use in combination with the Drosophila Gal4 system. Proc. Natl. Acad. Sci. USA 107, 16166–16171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–1782 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thorpe, H.M. & Smith, M.C. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Natl. Acad. Sci. USA 95, 5505–5510 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Horn, C., Offen, N., Nystedt, S., Hacker, U. & Wimmer, E.A. piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics 163, 647–661 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rad, R. et al. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 330, 1104–1107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, X. et al. piggyBac internal sequences are necessary for efficient transformation of target genomes. Insect Mol. Biol. 14, 17–30 (2005).

    Article  PubMed  Google Scholar 

  31. Thibault, S.T. et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat. Genet. 36, 283–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Siegal, M.L. & Hartl, D.L. Transgene coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144, 715–726 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Maggert, K.A., Gong, W.J. & Golic, K.G. Methods for homologous recombination in Drosophila. Methods Mol. Biol. 420, 155–174 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Gao, S. et al. The neural substrate of spectral preference in Drosophila. Neuron 60, 328–342 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Newsome, T.P., Asling, B. & Dickson, B.J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860 (2000).

    CAS  PubMed  Google Scholar 

  36. Venken, K.J., He, Y., Hoskins, R.A. & Bellen, H.J. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–1751 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Malla, S., Dafhnis-Calas, F., Brookfield, J.F., Smith, M.C. & Brown, W.R. Rearranging the centromere of the human Y chromosome with phiC31 integrase. Nucleic Acids Res. 33, 6101–6113 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pfeiffer, B.D. et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735–755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Awasaki, T., Lai, S.L., Ito, K. & Lee, T. Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J. Neurosci. 28, 13742–13753 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gohl, D., Muller, M., Pirrotta, V., Affolter, M. & Schedl, P. Enhancer blocking and transvection at the Drosophila apterous locus. Genetics 178, 127–143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schuldiner, O. et al. piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev. Cell 14, 227–238 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hagstrom, K., Muller, M. & Schedl, P. Fab-7 functions as a chromatin domain boundary to ensure proper segment specification by the Drosophila bithorax complex. Genes Dev. 10, 3202–3215 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Rubin, G.M. & Spradling, A.C. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353 (1982).

    Article  CAS  PubMed  Google Scholar 

  44. Potter, C.J. & Luo, L. Splinkerette PCR for mapping transposable elements in Drosophila. PLoS ONE 5, e10168 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ochman, H., Gerber, A.S. & Hartl, D.L. Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621–623 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tweedie, S. et al. FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res. 37, D555–D559 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Wagh, D.A. et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49, 833–844 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Clandinin laboratory for helpful advice; M. Müller (University of Basel), M. Wernet (Stanford University), T. Schwabe (Stanford University), G. Dietzl (Stanford University), J. Bateman (Bowdoin College), L. Luo (Stanford University), C.-H. Lee (US National Institutes of Health) and P. Schedl (Princeton University) for reagents; S. Burns for assistance with experiments; and A. Parks at the Bloomington Drosophila Stock Center. M. Klovstad, L. Luo and T. Schwabe provided valuable comments on the manuscript. M. Spletter helped score antennal lobes. This work was funded by a National Institutes of Health Director's Pioneer Award DP1 OD003530 (T.R.C.) and by National Institutes of Health R01 EY015231 (T.R.C.). D.M.G. and M.A.S. were supported by Stanford Dean's Postdoctoral fellowships.

Author information

Authors and Affiliations

Authors

Contributions

D.M.G. and T.R.C. designed the experiments; D.M.G., M.A.S., X.J.G., F.J.L., C.-C.L., C.J.P. and T.R.C. performed the experiments; S.B. provided critical reagents; and D.M.G. and T.R.C. wrote the manuscript.

Corresponding author

Correspondence to Thomas R Clandinin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–3 (PDF 5749 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gohl, D., Silies, M., Gao, X. et al. A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 8, 231–237 (2011). https://doi.org/10.1038/nmeth.1561

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1561

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing