Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atmospheric nanoparticles formed from heterogeneous reactions of organics

Abstract

Atmospheric aerosols directly and indirectly affect the radiative balance of the Earth’s atmosphere1. Nanoparticles are a key component of atmospheric aerosols, growing rapidly under ambient conditions2,3,4. Organic species are thought to lead to the growth of nanoparticles smaller than 20 nm (refs 5, 6), but the identity of these species and the underlying chemical mechanisms remain elusive. Here we exposed nanoparticles to a range of organic vapours—2,4-hexadienal, glyoxal and trimethylamine—and monitored particle size to determine the contribution of organic vapours to nanoparticle growth. We show that organic species enhance the growth of nanoparticles, producing non-volatile oligomers, polymers and alkylaminium sulphates in the particle phase. Nanoparticle growth increased with relative humidity in the presence of glyoxal and trimethylamine, but decreased at higher relative humidities in the presence of 2,4-hexadienal, dependent on the reaction mechanism of the organic species involved. Oligomerization and polymerization were largely suppressed in particles smaller than 4 nm and nanoparticle growth increased with particle size. Our findings help to explain the presence of previously measured, but unidentified non-volatile compounds in atmospheric nanoparticles and to improve model simulations of new particle formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Size distributions of nanoparticles.
Figure 2: Particle growth factor (Dp/Dp*) on exposure to organic vapours.
Figure 3: TD-ID-CIMS analysis of particle composition after exposure to 2,4-hexadienal and trimethylamine vapours.
Figure 4: TD-ID-CIMS analysis of particle composition after exposure to glyoxal vapour.

Similar content being viewed by others

References

  1. Solomon, S. et al. IPCC Climate Change 2007: The Physical Science Basis (Cambridge Univ. Press, 2007).

    Google Scholar 

  2. McMurry, P. H. et al. A criterion for new particle formation in the sulfur-rich Atlanta atmosphere. J. Geophys. Res. 110, D22S02 (2005).

    Google Scholar 

  3. Zhang, Q. et al. Insights into the chemistry of new particle formation and growth events in Pittsburgh based on aerosol mass spectrometry. Environ. Sci. Technol. 38, 4797–4809 (2004).

    Article  Google Scholar 

  4. Russell, L. M. et al. Nanoparticle growth following photochemical alpha- and beta-pinene oxidation at Appledore Island during International Consortium for Research on Transport and Transformation/Chemistry of Halogens at the Isles of Shoals 2004. J. Geophys. Res. 112, D10S21 (2007).

    Article  Google Scholar 

  5. Ehn, M. et al. Non-volatile residuals of newly formed atmospheric particles in the boreal forest. Atmos. Chem. Phys. 7, 677–684 (2007).

    Article  Google Scholar 

  6. Wehner, B. et al. The contribution of sulfuric acid and non-volatile compounds on the growth of freshly formed atmospheric aerosols. Geophys. Res. Lett. 32, L17810 (2005).

    Article  Google Scholar 

  7. Ball, S. M., Hanson, D. R., Eisele, F. L. & McMurry, P. H. Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapours. J. Geophys. Res. 104, 23709–23718 (1999).

    Article  Google Scholar 

  8. Zhang, R. et al. Atmospheric new particle formation enhanced by organic acids. Science 304, 1487–1490 (2004).

    Article  Google Scholar 

  9. Yu, F. Q. & Turco, R. P. From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol formation. J. Geophys. Res. 106, 4797–4814 (2001).

    Article  Google Scholar 

  10. Lee, S. H. et al. Particle formation by ion nucleation in the upper troposphere and lower stratosphere. Science 301, 1886–1889 (2003).

    Article  Google Scholar 

  11. Zhang, R. et al. Formation of nano-sized particles of blue haze enhanced by anthropogenic pollution. Proc. Natl Acad. Sci. USA 106, 17650–17654 (2009).

    Article  Google Scholar 

  12. Zhang, K. M. & Wexler, A. S. A hypothesis for growth of fresh atmospheric nuclei. J. Geophys. Res. 107, 4577 (2002).

    Google Scholar 

  13. Laaksonen, A. et al. The role of VOC oxidation products in continental new particle formation. Atmos. Chem. Phys. 8, 2657–2665 (2008).

    Article  Google Scholar 

  14. Smith, J. N. et al. Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticles growth. Geophys. Res. Lett. 35, L04808 (2008).

    Google Scholar 

  15. Zhao, J., Levitt, N. P. & Zhang, R. Heterogeneous chemistry of octanal and 2,4-hexadienal with sulfuric acid. Geophys. Res. Lett. 32, L09802 (2005).

    Google Scholar 

  16. Zhao, J., Levitt, N. P., Zhang, R. & Chen, J. Heterogeneous reactions of methylglyoxal in acidic media: Implications for secondary organic aerosol formation. Environ. Sci. Technol. 40, 7682–7687 (2006).

    Article  Google Scholar 

  17. Krizner, H. E., De Haan, D. O. & Kua, J. Thermodynamics and kinetics of methylglyoxal dimer formation: A computational study. J. Phys. Chem. 113, 6994–7001 (2009).

    Article  Google Scholar 

  18. Barsanti, K. C., McMurry, P. H. & Smith, J. N. The potential contribution of organic salts to new particle growth. Atmos. Chem. Phys. 9, 2949–2957 (2009).

    Article  Google Scholar 

  19. Zhang, R. et al. Variability in morphology, hygroscopic and optical properties of soot aerosols during internal mixing in the atmosphere. Proc. Natl Acad. Sci. USA 105, 10291–10296 (2008).

    Article  Google Scholar 

  20. Fortner, E. C., Zhao, J. & Zhang, R. Development of ion drift-chemical ionization mass spectrometry. Anal. Chem. 76, 5436–5440 (2004).

    Article  Google Scholar 

  21. Smith, J. N., Moore, K. F., McMurry, P. H. & Eisele, F. L. Atmospheric measurements of sub-20 nm diameter particle chemical composition by thermal desorption chemical ionization mass spectrometry. Aerosol Sci. Technol. 38, 100–110 (2004).

    Google Scholar 

  22. Liggio, J., Li, S. M. & McLaren, R. Heterogeneous reactions of glyoxal on particulate matter: Identification of acetals and sulfate esters. Environ. Sci. Technol. 39, 1532–1541 (2005).

    Article  Google Scholar 

  23. Sellegri, K. et al. Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST. Atmos. Chem. Phys. 5, 373–384 (2005).

    Article  Google Scholar 

  24. Yu, Y. & Turco, R. Case studies of particle formation events observed in boreal forests: Implications for nucleation mechanisms. Atmos. Chem. Phys. 8, 6085–6102 (2008).

    Article  Google Scholar 

  25. Fu, T. M., Jacob, D. J. & Heald, C. L. Aqueous-phase reactive uptake of dicarbonyls as a source of organic aerosol over eastern North America. Atmos. Environ. 43, 1814–1822 (2009).

    Article  Google Scholar 

  26. Fan, J. & Zhang, R. Atmospheric oxidation mechanism of isoprene. Environ. Chem. 1, 140–149 (2004).

    Article  Google Scholar 

  27. Suh, I., Lei, W. & Zhang, R. Experimental and theoretical studies of isoprene reaction with NO3 . J. Phys. Chem. 105, 6471–6478 (2001).

    Article  Google Scholar 

  28. Lloyd, J. A., Heaton, K. J. & Johnston, M. V. Reactive uptake of trimethylamine into ammonium nitrate particles. J. Phys. Chem. A 113, 4840–4843 (2009).

    Article  Google Scholar 

  29. Smith, J. N. et al. Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proc. Natl Acad. Sci. USA (in the press).

  30. Volkamer, R. et al. A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol. Geophys. Res. Lett. 34, L19807 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Robert A. Welch Foundation (Grant A-1417) and the US National Science Foundation (AGS-0938352 and CBET-0932705). R.Z. acknowledges further support from the National Natural Science Foundation of China Grant (40728006).

Author information

Authors and Affiliations

Authors

Contributions

R.Z. and L.W. wrote the paper. R.Z., L.W. and A.F.K. designed the study. All seven authors performed the experiments. R.Z., L.W. and A.F.K. analysed the data.

Corresponding author

Correspondence to Renyi Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 443 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Khalizov, A., Zheng, J. et al. Atmospheric nanoparticles formed from heterogeneous reactions of organics. Nature Geosci 3, 238–242 (2010). https://doi.org/10.1038/ngeo778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing