Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of carbonated melt to alkali basalt in the South China Sea

Abstract

CO2 is considered to play a key role in the melting of the deep upper mantle, and carbonated silicate melts have been widely predicted by partial melting experiments to exist at mantle depths of greater than 80 km. However, such melts have not been shown to exist in nature. Thus, the relationship between CO2 and the origin of silicate melts is highly speculative. Here we present geochemical analyses of rocks sampled from the South China Sea, at the Integrated Ocean Discovery Program Site U1431. We identify natural carbonated silicate melts, which are enriched in light rare earth elements and depleted in Nb and Ta, and show that they were continuously transformed to alkali basalts that are less enriched in light rare earth elements and enriched in Nb and Ta. This shows that carbonated silicate melts can survive in the shallow mantle and penetrate through the hot asthenosphere. Carbonated silicate melts were converted to alkali basaltic melts through reactions with the lithospheric mantle, during which precipitation of apatite accounts for reduction of light rare earth elements and genesis of positive Nb–Ta anomalies. We propose that an extremely thin lithosphere (less than 20 km in the South China Sea) facilitates extrusion of the carbonated silicate melts, whereas a thickened lithosphere tends to modify carbonated silicate melt to alkali basalt.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the South China Sea, sampling location and stratigraphy of recovered cores.
Figure 2: Plots showing relationships of CaO, P2O5 and La versus SiO2 for Site U1431 volcanic clasts.
Figure 3: Trace element patterns for Site U1431 volcanic clasts.
Figure 4: Plots of ɛNd versus 87Sr/86Sr, and 208Pb/204Pb versus 206Pb/204Pb for Site U1431 volcanic clasts.
Figure 5: Effects of apatite fractionation and lithosphere thickness.
Figure 6: Schematic evolution of carbonated silicate melts in the lithosphere.

Similar content being viewed by others

References

  1. Sleep, N. H. & Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. 106, 1373–1399 (2001).

    Article  Google Scholar 

  2. Dasgupta, R., Hirschmann, M. M. & Stalker, K. Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas. J. Petrol. 47, 647–671 (2006).

    Article  Google Scholar 

  3. Dasgupta, R., Hirschmann, M. M. & Smith, N. D. Water follows carbon: CO2 incites deep silicate melting and dehydration beneath mid-ocean ridges. Geology 35, 135–138 (2007).

    Article  Google Scholar 

  4. Kogiso, T., Hirschmann, M. M. & Frost, D. J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet. Sci. Lett. 216, 603–617 (2003).

    Article  Google Scholar 

  5. Andersen, T. & Neumann, E. R. Fluid inclusions in mantle xenoliths. Lithos 55, 301–320 (2001).

    Article  Google Scholar 

  6. Hudgins, T. R., Mukasa, S. B., Simon, A. C., Moore, G. & Barifaijo, E. Melt inclusion evidence for CO2-rich melts beneath the western branch of the East African Rift: implications for long-term storage of volatiles in the deep lithospheric mantle. Contrib. Mineral. Petrol. 169, 1–18 (2015).

    Article  Google Scholar 

  7. Neumann, E.-R., Wulff-Pedersen, E., Pearson, N. J. & Spencer, E. A. Mantle xenoliths from Tenerife (Canary Islands): evidence for reactions between mantle peridotites and silicic carbonatitie melts inducing Ca metasomatism. J. Petrol. 43, 825–857 (2002).

    Article  Google Scholar 

  8. Silva, L. C., Le Bas, M. J. & Robertson, A. H. F. An oceanic carbonatite volcano on Santiago, Cape Verde Islands. Nature 294, 644–645 (1981).

    Article  Google Scholar 

  9. Hoernle, K., Tilton, G., Le Bas, M. J. & Garbe-Schönberg, D. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib. Mineral. Petrol. 142, 520–542 (2002).

    Article  Google Scholar 

  10. Weidendorfer, D., Schmidt, M. W. & Mattsson, H. B. Fractional crystallization of Si-undersaturated alkaline magmas leading to unmixing of carbonatites on Brava Island (Cape Verde) and a general model of carbonatite genesis in alkaline magma suites. Contrib. Mineral. Petrol. 171, 1–29 (2016).

    Article  Google Scholar 

  11. Doucelance, R., Hammouda, T., Moreira, M. & Martins, J. C. Geochemical constraints on depth of origin of oceanic carbonatites: the Cape Verde case. Geochim. Cosmochim. Acta 74, 7261–7282 (2010).

    Article  Google Scholar 

  12. Foley, S. F. et al. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112S, 274–283 (2009).

    Article  Google Scholar 

  13. Dasgupta, R., Hirschmann, M. M. & Smith, N. D. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J. Petrol. 48, 2093–2124 (2007).

    Article  Google Scholar 

  14. Pilet, S., Baker, M. B. & Stolper, E. M. Metasomatized lithosphere and the origin of alkaline lavas. Science 16, 916–919 (2008).

    Article  Google Scholar 

  15. Kiseeva, E. S. et al. An experimental study of carbonated eclogite at 3.5–5.5 GPa—implications for silicate and carbonate metasomatism in the cratonic mantle. J. Petrol. 53, 727–759 (2012).

    Article  Google Scholar 

  16. Herzberg, C. et al. Phantom Archean crust in Mangaia hotspot lavas and the meaning of heterogeneous mantle. Earth Planet. Sci. Lett. 396, 97–106 (2014).

    Article  Google Scholar 

  17. Mallik, A. & Dasgupta, R. Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkali magmas. J. Petrol. 54, 2267–2300 (2013).

    Article  Google Scholar 

  18. Dalou, C., Koga, K. T., Hammouda, T. & Poitrasson, F. Trace element partitioning between carbonatitic melts and mantle transition zone minerals: implications for the source of carbonatites. Geochim. Cosmochim. Acta 73, 239–255 (2009).

    Article  Google Scholar 

  19. Sun, S. S. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  20. Willbold, M. & Stracke, A. Trace element composition of mantle end-members: implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. 7, Q04004 (2006).

    Article  Google Scholar 

  21. Kalfoun, F., Ionov, D. & Merlet, C. HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites. Earth Planet. Sci. Lett. 199, 49–65 (2002).

    Article  Google Scholar 

  22. Briais, A., Patriat, P. & Tapponnier, P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia. J. Geophys. Res. 98, 6299–6328 (1993).

    Article  Google Scholar 

  23. Yan, Q. S., Shi, X. F., Wang, K. S., Bu, W. R. & Xiao, L. Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea. Sci. China D 51, 550–556 (2008).

    Article  Google Scholar 

  24. Expedition 349 Scientists. Opening of the South China Sea and its Implications for Southeast Asian Tectonics, Climates, and Deep Mantle Processes Since the Late Mesozoic International Ocean Discovery Program Expedition 349 Preliminary Report (2014); http://dx.doi.org/10.14379/iodp.pr.349.2014

  25. Baker, M. B. & Wyllie, P. J. High-pressure apatite solubility in carbonate-rich liquids: implications for mantle metasomatism. Geochim. Cosmochim. Acta 56, 3409–3422 (1992).

    Article  Google Scholar 

  26. Hirose, K. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys. Res. Lett. 24, 2837–2840 (1997).

    Article  Google Scholar 

  27. Hammouda, T., Moine, B. N., Devidal, J. L. & Vincent, C. Trace element partitioning during partial melting of carbonated eclogites. Phys. Earth Planet. Inter. 174, 60–69 (2009).

    Article  Google Scholar 

  28. Gerbode, C. & Dasgupta, R. Carbonate-fluxed melting of MORB-like pyroxenite at 2.9 GPa and genesis of HIMU ocean island basalts. J. Petrol. 51, 2067–2088 (2010).

    Article  Google Scholar 

  29. Dasgupta, R., Hirschmann, M. M. & Withers, A. C. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet. Sci. Lett. 227, 73–85 (2004).

    Article  Google Scholar 

  30. Chazot, G., Menzies, M. A. & Harte, B. Determination of partition coefficients between apatite, clinopyroxene, amphibole, and melt in natural spinel lherzolites from Yemen: implications for wet melting of the lithospheric mantle. Geochim. Cosmochim. Acta 60, 423–437 (1996).

    Article  Google Scholar 

  31. Hammouda, T., Chantel, J. & Devidal, J.-L. Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure. Geochim. Cosmochim. Acta 74, 7220–7235 (2010).

    Article  Google Scholar 

  32. Hervig, R. L. & Smith, J. V. Dolomite-apatite inclusion in chrome-diopside crystal, Bellsbank kimberlite, South Africa. Am. Mineral. 66, 346–349 (1981).

    Google Scholar 

  33. Bau, M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 123, 323–333 (1996).

    Article  Google Scholar 

  34. Irber, W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta 63, 489–508 (1999).

    Article  Google Scholar 

  35. Liu, C. Q. & Zhang, H. The lanthanide tetrad effect in apatite from the Altay No. 3 pegmatite, Xingjiang, China: an intrinsic feature of the pegmatite magma. Chem. Geol. 214, 61–77 (2005).

    Article  Google Scholar 

  36. McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  37. Arevalo, R. Jr & McDonough, W. F. Chemical variations and regional diversity observed in MORB. Chem. Geol. 271, 70–85 (2010).

    Article  Google Scholar 

  38. Dalton, J. A. & Wood, B. J. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet. Sci. Lett. 119, 511–525 (1993).

    Article  Google Scholar 

  39. Russell, J. K., Porritt, L. A., Lavallée, Y. & Dingwell, D. B. Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481, 352–356 (2012).

    Article  Google Scholar 

  40. Hammouda, T., Chantel, J., Manthilake, G., Guignard, J. & Crichton, W. Hot mantle geotherms stabilize calcic carbonatite magmas up to the surface. Geology 42, 911–914 (2014).

    Article  Google Scholar 

  41. Kono, Y. et al. Ultralow viscosity of carbonate melts at high pressures. Nat. Commun. 5, 5091 (2014).

    Article  Google Scholar 

  42. Ellam, R. M. Lithospheric thickness as a control on basalt geochemistry. Geology 20, 153–156 (1992).

    Article  Google Scholar 

  43. Hirano, N. et al. Volcanism in response to plate flexure. Science 313, 1426–1428 (2006).

    Article  Google Scholar 

  44. Tu, K. et al. Magmatism in the South China Basin 1. Isotopic and trace-element evidence for an endogenous Dupal mantle component. Chem. Geol. 97, 47–63 (1992).

    Article  Google Scholar 

  45. Hart, S. R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–757 (1984).

    Article  Google Scholar 

  46. Yoshii, T., Kono, Y. & Ito, K. in Geophysics of the Pacific Ocean Basin and its Margin (eds Sutton, G. H., Manghnani, M. H. & Moberly, R.) 423–430 (Geophysical Monograph 19, 1976).

    Google Scholar 

  47. Yang, Y. H., Zhang, H. F., Chu, Z. Y., Xie, L. W. & Wu, F. Y. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using Multi-Collector ICP-MS and TIMS. Int. J. Mass Spectrom. 290, 120–126 (2010).

    Article  Google Scholar 

  48. Kylander-Clark, A. R., Hacker, B. R. & Cottle, J. M. Laser-ablation split-stream ICP petrochronology. Chem. Geol. 345, 99–112 (2013).

    Article  Google Scholar 

  49. Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508–2518 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the dedicated effort of the ship’s crew and scientific staff of the Drillship JOIDES Resolution. We thank X.-J. Wang for Sr–Nd–Hf isotope analyses, J.-X. Zhao and L.-F. Zhong for Pb isotope analyses, and A. Kylander-Clark for LA-ICP-MS analyses. G.-L.Z. and M.G.J. thank F. Spera for discussions on melt immiscibility. We thank C. Class for constructive suggestions. This work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11030103), the National Natural Science Foundation of China (41522602, 41376065, 41372064), and AoShan Talent Program Supported by Qingdao National Laboratory for Marine Science and Technology (No. 2015ASTP).

Author information

Authors and Affiliations

Authors

Contributions

G.-L.Z. designed this project and wrote the manuscript. M.G.J., L.-H.C. and A.W.H. contributed to the scientific discussion, including interpretation of the results and scientific implications.

Corresponding authors

Correspondence to Guo-Liang Zhang or Li-Hui Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3918 kb)

Supplementary Information

Supplementary Information (XLSX 30 kb)

Supplementary Information

Supplementary Information (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GL., Chen, LH., Jackson, M. et al. Evolution of carbonated melt to alkali basalt in the South China Sea. Nature Geosci 10, 229–235 (2017). https://doi.org/10.1038/ngeo2877

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2877

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing