Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Activation and reduction of carbon dioxide by nitrogenase iron proteins

Abstract

The iron (Fe) proteins of molybdenum (Mo) and vanadium (V) nitrogenases mimic carbon monoxide (CO) dehydrogenase in catalyzing the interconversion between CO2 and CO under ambient conditions. Catalytic reduction of CO2 to CO is achieved in vitro and in vivo upon redox changes of the Fe-protein-associated [Fe4S4] clusters. These observations establish the Fe protein as a model for investigation of CO2 activation while suggesting its biotechnological adaptability for recycling the greenhouse gas into useful products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro reduction of CO2 to CO by Fe proteins.
Figure 2: Interactions of CO2 and CO with the [Fe4S4] clusters of the Fe proteins.
Figure 3: In vivo reduction of CO2 to CO by Fe proteins.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Burgess, B.K. & Lowe, D.J. Chem. Rev. 96, 2983–3012 (1996).

    Article  CAS  Google Scholar 

  2. Rees, D.C. et al. Philos. Trans. A Math. Phys. Eng. Sci. 363, 971–984 (2005).

    Article  CAS  Google Scholar 

  3. Hoffman, B.M., Lukoyanov, D., Yang, Z.Y., Dean, D.R. & Seefeldt, L.C. Chem. Rev. 114, 4041–4062 (2014).

    Article  CAS  Google Scholar 

  4. Eady, R.R. Chem. Rev. 96, 3013–3030 (1996).

    Article  CAS  Google Scholar 

  5. Hu, Y. & Ribbe, M.W. J. Biol. Inorg. Chem. 20, 435–445 (2015).

    Article  CAS  Google Scholar 

  6. Lee, C.C., Hu, Y. & Ribbe, M.W. Science 329, 642 (2010).

    Article  CAS  Google Scholar 

  7. Hu, Y., Lee, C.C. & Ribbe, M.W. Science 333, 753–755 (2011).

    Article  CAS  Google Scholar 

  8. Vincent, K.A. et al. Chem. Commun. (Camb.) 20, 2590–2591 (2003).

    Article  Google Scholar 

  9. Angove, H.C., Yoo, S.J., Münck, E. & Burgess, B.K. J. Biol. Chem. 273, 26330–26337 (1998).

    Article  CAS  Google Scholar 

  10. Jeoung, J.H., Fesseler, J., Goetzl, S. & Dobbek, H. Met. Ions Life Sci. 14, 37–69 (2014).

    Article  CAS  Google Scholar 

  11. Kung, Y. & Drennan, C.L. Curr. Opin. Chem. Biol. 15, 276–283 (2011).

    Article  CAS  Google Scholar 

  12. Ensign, S.A. Biochemistry 34, 5372–5378 (1995).

    Article  CAS  Google Scholar 

  13. Lindahl, P.A., Münck, E. & Ragsdale, S.W. J. Biol. Chem. 265, 3873–3879 (1990).

    CAS  PubMed  Google Scholar 

  14. Kumar, M., Lu, W.P. & Ragsdale, S.W. Biochemistry 33, 9769–9777 (1994).

    Article  CAS  Google Scholar 

  15. Orme-Johnson, W.H. & Sands, R.H. in Iron-Sulfur Proteins (ed. Lovenberg, W.) 195–238 (Academic Press, New York and London, 1973).

  16. Lowery, T.J. et al. Proc. Natl. Acad. Sci. USA 103, 17131–17136 (2006).

    Article  CAS  Google Scholar 

  17. Jacobs, D. & Watt, G.D. Biochemistry 52, 4791–4799 (2013).

    Article  CAS  Google Scholar 

  18. Howard, J.B. & Rees, D.C. Proc. Natl. Acad. Sci. USA 103, 17088–17093 (2006).

    Article  CAS  Google Scholar 

  19. Erickson, J.A. et al. Biochemistry 38, 14279–14285 (1999).

    Article  CAS  Google Scholar 

  20. Jeoung, J.H. & Dobbek, H. Science 318, 1461–1464 (2007).

    Article  CAS  Google Scholar 

  21. Rebelein, J.G., Lee, C.C., Hu, Y. & Ribbe, M.W. Nat. Commun. 7 http://dx.doi.org/10.1038/ncomms13641 (2016).

  22. Lee, C.C., Hu, Y. & Ribbe, M.W. Proc. Natl. Acad. Sci. USA 106, 9209–9214 (2009).

    Article  CAS  Google Scholar 

  23. Hu, Y., Fay, A.W. & Ribbe, M.W. Proc. Natl. Acad. Sci. USA 102, 3236–3241 (2005).

    Article  CAS  Google Scholar 

  24. Bursey, E.H. & Burgess, B.K. J. Biol. Chem. 273, 29678–29685 (1998).

    Article  CAS  Google Scholar 

  25. Kage, S., Kudo, K., Ikeda, H. & Ikeda, N. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 805, 113–117 (2004).

    Article  CAS  Google Scholar 

  26. Ribbe, M.W., Bursey, E.H. & Burgess, B.K. J. Biol. Chem. 275, 17631–17638 (2000).

    Article  CAS  Google Scholar 

  27. Rupnik, K., Lee, C.C., Hu, Y., Ribbe, M.W. & Hales, B.J. J. Am. Chem. Soc. 133, 6871–6873 (2011).

    Article  CAS  Google Scholar 

  28. Eady, R.R., Richardson, T.H., Miller, R.W., Hawkins, M. & Lowe, D.J. Biochem. J. 256, 189–196 (1988).

    Article  CAS  Google Scholar 

  29. Ahlrichs, R., Bär, M., Häser, M., Horn, H. & Kölmel, C. Chem. Phys. Lett. 162, 165–169 (1989).

    Article  CAS  Google Scholar 

  30. Strop, P. et al. Biochemistry 40, 651–656 (2001).

    Article  CAS  Google Scholar 

  31. Schlessman, J.L., Woo, D., Joshua-Tor, L., Howard, J.B. & Rees, D.C. J. Mol. Biol. 280, 669–685 (1998).

    Article  CAS  Google Scholar 

  32. Klamt, A. & Schüürmann, G. J. Chem. Soc., Perkin Trans. 2 1993, 799–805 (1993).

    Article  Google Scholar 

  33. Tao, J., Perdew, J.P., Staroverov, V.N. & Scuseria, G.E. Phys. Rev. Lett. 91, 146401 (2003).

    Article  Google Scholar 

  34. Weigend, F. & Ahlrichs, R. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by UCI startup funds and a Hellman Fellowship (to Y.H.).

Author information

Authors and Affiliations

Authors

Contributions

J.G.R., M.T.S. and C.C.L. performed experiments and analyzed data; Y.H. designed experiments, analyzed data and wrote the paper.

Corresponding author

Correspondence to Yilin Hu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–9. (PDF 1845 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebelein, J., Stiebritz, M., Lee, C. et al. Activation and reduction of carbon dioxide by nitrogenase iron proteins. Nat Chem Biol 13, 147–149 (2017). https://doi.org/10.1038/nchembio.2245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2245

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology