Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NO-inducible nitrosothionein mediates NO removal in tandem with thioredoxin

Abstract

Nitric oxide (NO) is a toxic reactive nitrogen species that induces microbial adaption mechanisms. Screening a genomic DNA library identified a new gene, ntpA, that conferred growth tolerance upon Aspergillus nidulans against exogenous NO. The gene encoded a cysteine-rich 23-amino-acid peptide that reacted with NO and S-nitrosoglutathione to generate an S-nitrosated peptide. Disrupting ntpA increased amounts of cellular S-nitrosothiol and NO susceptibility. Thioredoxin and its reductase denitrosated the S-nitrosated peptide, decreased cellular S-nitrosothiol and conferred tolerance against NO, indicating peptide-mediated catalytic NO removal. The peptide binds copper(I) in vitro but is dispensable for metal tolerance in vivo. NO but not metal ions induced production of the peptide and ntpA transcripts. We discovered that the thionein family of peptides has NO-related functions and propose that the new peptide be named NO-inducible nitrosothionein (iNT). The ubiquitous distribution of iNT-like polypeptides constitutes a potent NO-detoxifying mechanism that is conserved among various organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of NO-tolerating ntpA.
Figure 2: S-nitrosothionein and iNT have similar properties.
Figure 3: Denitrosation of iNT-SNO by Trx system.
Figure 4: Defense against heavy metals does not require iNT or MTLs.
Figure 5: Biochemical mechanism of iNT-dependent NO detoxification.

Similar content being viewed by others

References

  1. Stamler, J.S. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78, 931–936 (1994).

    Article  CAS  Google Scholar 

  2. Goretski, J., Zafiriou, O.C. & Hollocher, T.C. Steady-state nitric oxide concentrations during denitrification. J. Biol. Chem. 265, 11535–11538 (1990).

    CAS  PubMed  Google Scholar 

  3. Hausladen, A. & Stamler, J.S. Nitrosative stress. Methods Enzymol. 300, 389–395 (1999).

    Article  CAS  Google Scholar 

  4. Forrester, M.T. & Foster, M.W. Protection from nitrosative stress: a central role for microbial flavohemoglobin. Free Radic. Biol. Med. 52, 1620–1633 (2012).

    Article  CAS  Google Scholar 

  5. Gardner, A.M., Helmick, R.A. & Gardner, P.R. Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli. J. Biol. Chem. 277, 8172–8177 (2002).

    Article  CAS  Google Scholar 

  6. Shoun, H. & Tanimoto, T. Denitrification by the fungus Fusarium oxysporum and involvement of cytochrome P-450 in the respiratory nitrite reduction. J. Biol. Chem. 266, 11078–11082 (1991).

    CAS  PubMed  Google Scholar 

  7. St. John, G. et al. Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates. Proc. Natl. Acad. Sci. USA 98, 9901–9906 (2001).

    Article  CAS  Google Scholar 

  8. De Groote, M.A., Testerman, T., Xu, Y., Stauffer, G. & Fang, F.C. Homocysteine antagonism of nitric oxide–related cytostasis in Salmonella typhimurium. Science 272, 414–417 (1996).

    Article  CAS  Google Scholar 

  9. Flatley, J. et al. Transcriptional responses of Escherichia coli to S-nitrosoglutathione under defined chemostat conditions reveal major changes in methionine biosynthesis. J. Biol. Chem. 280, 10065–10072 (2005).

    Article  CAS  Google Scholar 

  10. Hromatka, B.S., Noble, S.M. & Johnson, A.D. Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol. Biol. Cell 16, 4814–4826 (2005).

    Article  CAS  Google Scholar 

  11. Nittler, M.P., Hocking-Murray, D., Foo, C.K. & Sil, A. Identification of Histoplasma capsulatum transcripts induced in response to reactive nitrogen species. Mol. Biol. Cell 16, 4792–4813 (2005).

    Article  CAS  Google Scholar 

  12. Sarver, A. & DeRisi, J. Fzf1p regulates an inducible response to nitrosative stress in Saccharomyces cerevisiae. Mol. Biol. Cell 16, 4781–4791 (2005).

    Article  CAS  Google Scholar 

  13. Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E. & Stamler, J.S. Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol. 6, 150–166 (2005).

    Article  CAS  Google Scholar 

  14. Clancy, R.M., Levartovsky, D., Leszczynska-Piziak, J., Yegudin, J. & Abramson, S.B. Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary. Proc. Natl. Acad. Sci. USA 91, 3680–3684 (1994).

    Article  CAS  Google Scholar 

  15. Liu, L. et al. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410, 490–494 (2001).

    Article  CAS  Google Scholar 

  16. Benhar, M., Forrester, M.T. & Stamler, J.S. Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat. Rev. Mol. Cell Biol. 10, 721–732 (2009).

    Article  CAS  Google Scholar 

  17. Foster, M.W., Liu, L., Zeng, M., Hess, D.T. & Stamler, J.S. A genetic analysis of nitrosative stress. Biochemistry 48, 792–799 (2009).

    Article  CAS  Google Scholar 

  18. Wei, W. et al. S-Nitrosylation from GSNOR deficiency impairs DNA repair and promotes hepatocarcinogenesis. Sci. Transl. Med. 2, 19ra13 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Takasaki, K. et al. Fungal ammonia fermentation, a novel metabolic mechanism that couples the dissimilatory and assimilatory pathways of both nitrate and ethanol. Role of acetyl CoA synthetase in anaerobic ATP synthesis. J. Biol. Chem. 279, 12414–12420 (2004).

    Article  CAS  Google Scholar 

  20. Shimizu, M., Fujii, T., Masuo, S., Fujita, K. & Takaya, N. Proteomic analysis of Aspergillus nidulans cultured under hypoxic conditions. Proteomics 9, 7–19 (2009).

    Article  CAS  Google Scholar 

  21. Zhou, S. et al. Functional analysis and subcellular location of two flavohemoglobins from Aspergillus oryzae. Fungal Genet. Biol. 48, 200–207 (2011).

    Article  CAS  Google Scholar 

  22. de Jesús-Berríos, M. et al. Enzymes that counteract nitrosative stress promote fungal virulence. Curr. Biol. 13, 1963–1968 (2003).

    Article  Google Scholar 

  23. Schinko, T. et al. Transcriptome analysis of nitrate assimilation in Aspergillus nidulans reveals connections to nitric oxide metabolism. Mol. Microbiol. 78, 720–738 (2010).

    Article  CAS  Google Scholar 

  24. Zhou, S. et al. Heme-biosynthetic porphobilinogen deaminase protects Aspergillus nidulans from nitrosative stress. Appl. Environ. Microbiol. 78, 103–109 (2012).

    Article  CAS  Google Scholar 

  25. Wortman, J.R. et al. The 2008 update of the Aspergillus nidulans genome annotation: a community effort. Fungal Genet. Biol. 46 (suppl. 1): S2–S13 (2009).

    Article  CAS  Google Scholar 

  26. Capdevila, M. & Atrian, S. Metallothionein protein evolution: a miniassay. J. Biol. Inorg. Chem. 16, 977–989 (2011).

    Article  CAS  Google Scholar 

  27. de Oliveira, M.G., Shishido, S.M., Seabra, A.B. & Morgon, N.H. Thermal stability of primary S-nitrosothiols: roles of autocatalysis and structural effects on the rate of nitric oxide release. J. Phys. Chem. A 106, 8963–8970 (2002).

    Article  CAS  Google Scholar 

  28. Jaffrey, S.R. & Snyder, S.H. The biotin switch method for the detection of S-nitrosylated proteins. Sci. STKE 2001, pl1 (2001).

    CAS  PubMed  Google Scholar 

  29. Gow, A., Doctor, A., Mannick, J. & Gaston, B. S-Nitrosothiol measurements in biological systems. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 851, 140–151 (2007).

    Article  CAS  Google Scholar 

  30. Romero, J.M. & Bizzozero, O.A. Intracellular glutathione mediates the denitrosylation of protein nitrosothiols in the rat spinal cord. J. Neurosci. Res. 87, 701–709 (2009).

    Article  CAS  Google Scholar 

  31. Stoyanovsky, D.A. et al. Thioredoxin and lipoic acid catalyze the denitrosation of low molecular weight and protein S-nitrosothiols. J. Am. Chem. Soc. 127, 15815–15823 (2005).

    Article  CAS  Google Scholar 

  32. Thön, M., Al-Abdallah, Q., Hortschansky, P. & Brakhage, A.A. The thioredoxin system of the filamentous fungus Aspergillus nidulans: impact on development and oxidative stress response. J. Biol. Chem. 282, 27259–27269 (2007).

    Article  Google Scholar 

  33. Sengupta, R. et al. Thioredoxin catalyzes the denitrosation of low-molecular mass and protein S-nitrosothiols. Biochemistry 46, 8472–8483 (2007).

    Article  CAS  Google Scholar 

  34. Benhar, M., Forrester, M.T., Hess, D.T. & Stamler, J.S. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320, 1050–1054 (2008).

    Article  CAS  Google Scholar 

  35. Nikitovic, D. & Holmgren, A. S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J. Biol. Chem. 271, 19180–19185 (1996).

    Article  CAS  Google Scholar 

  36. Thön, M. et al. The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes. Nucleic Acids Res. 38, 1098–1113 (2010).

    Article  Google Scholar 

  37. Gold, B. et al. Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nat. Chem. Biol. 4, 609–616 (2008).

    Article  CAS  Google Scholar 

  38. Schwarz, M.A. et al. Metallothionein protects against the cytotoxic and DNA-damaging effects of nitric oxide. Proc. Natl. Acad. Sci. USA 92, 4452–4456 (1995).

    Article  CAS  Google Scholar 

  39. Tucker, S.L. et al. A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell 16, 1575–1588 (2004).

    Article  CAS  Google Scholar 

  40. Münger, K., Germann, U.A. & Lerch, K. Isolation and structural organization of the Neurosporra crassa copper metallothionein gene. EMBO J. 4, 2665–2668 (1985).

    Article  Google Scholar 

  41. Vašák, M. & Meloni, G. Chemistry and biology of mammalian metallothioneins. J. Biol. Inorg. Chem. 16, 1067–1078 (2011).

    Article  Google Scholar 

  42. Liu, S.X. et al. Reconstitution of apo-superoxide dismutase by nitric oxide-induced copper transfer from metallothioneins. Chem. Res. Toxicol. 13, 922–931 (2000).

    Article  CAS  Google Scholar 

  43. Cai, L., Koropatnick, J. & Cherian, M.G. Metallothionein protects DNA from copper-induced but not iron-induced cleavage in vitro. Chem. Biol. Interact. 96, 143–155 (1995).

    Article  CAS  Google Scholar 

  44. Kröncke, K.D. Nitrosative stress and transcription. Biol. Chem. 384, 1365–1377 (2003).

    Article  Google Scholar 

  45. Lushchak, O.V., Inoue, Y. & Lushchak, V.I. Regulatory protein Yap1 is involved in response of yeast Saccharomyces cerevisiae to nitrosative stress. Biochemistry (Mosc). 75, 629–664 (2010).

    Article  CAS  Google Scholar 

  46. Asano, Y., Hagiwara, D., Yamashino, T. & Mizuno, T. Characterization of the bZip-type transcription factor NapA with reference to oxidative stress response in Aspergillus nidulans. Biosci. Biotechnol. Biochem. 71, 1800–1803 (2007).

    Article  CAS  Google Scholar 

  47. Datta, P.K. & Lianos, E.A. Nitric oxide induces metallothionein-1 gene expression in mesangial cells. Transl. Res. 148, 180–187 (2006).

    Article  CAS  Google Scholar 

  48. Liu, L. et al. Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116, 617–628 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Shoun and S. Fushinobu for help with fluorometry and S. Osmani for his valuable suggestions in fungal transformation. We thank N. Foster for helpful discussion and critical reading of the manuscript. This study was supported by Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science (23-01090 to S.Z. and 21380055 to N.T.).

Author information

Authors and Affiliations

Authors

Contributions

N.T. and S.Z. planned the studies and prepared the manuscript. S.Z., T.N. and Y.K. designed and performed experiments. S.M., T.N., M.S., T.F., Y.D. and Y.K. performed the experiments.

Corresponding author

Correspondence to Naoki Takaya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2 and Supplementary Figures 1–9 (PDF 1060 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, S., Narukami, T., Masuo, S. et al. NO-inducible nitrosothionein mediates NO removal in tandem with thioredoxin. Nat Chem Biol 9, 657–663 (2013). https://doi.org/10.1038/nchembio.1316

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1316

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing