Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hyperornithinaemia- hyperammonaemia- homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter

Abstract

Neurospora crassa ARG13 and Saccharomyces cerevisiae ARG11 encode mitochondrial carrier family (MCF) proteins that transport ornithine across the mitochondrial inner membrane. We used their sequences to identify EST candidates that partially encode orthologous mammalian transporters. We thereby identified such a gene (ORNT1) that maps to 13q14 and whose expression, similar to that of other urea cycle (UC) components, was high in liver and varied with changes in dietary protein. ORNT1 expression restores ornithine metabolism in fibroblasts from patients with hyperammonaemia-hyperornithinaemia -homocitrullinuria (HHH) syndrome. In a survey of 11 HHH probands, we identified 3 ORNT1 mutant alleles that account for 21 of 22 possible mutant ORNT1 genes in our patients: F188Δ, which is common in French-Canadian HHH patients and encodes an unstable protein; E180K, which encodes a stable, properly targeted protein that is inactive; and a 13q14 microdeletion. Our results show that ORNT1 encodes the mitochondrial ornithine transporter involved in UC function and is defective in HHH syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of a candidate gene encoding a mammalian ornithine transporter.
Figure 2: Sequence alignment of human (Hs), mouse (Mm), N. crassa (Nc) and S. cerevisiae (Sc) MCF ornithine transporters.
Figure 3: ORNT1 expression restores incorporation of ornithine radiolabel into cellular protein in HHH fibroblasts.
Figure 4: ORNT1 mutations in HHH.
Figure 5: Survey of HHH probands and French-Canadian controls for F188Δ.
Figure 6: Two-colour FISH analysis of a metaphase chromosome spread from HHH011.
Figure 7: Expression of ORNT1 mutant alleles.
Figure 8: Subcellular location of wild-type and mutant ORNT1 transporters.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Valle, D. & Simell, O. The hyperornithinemias. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C., Beaudet, A., Sly, W. & Valle, D.) 1147–1185 (McGraw Hill, New York, 1995).

    Google Scholar 

  2. Brusilow, S.W. & Horwich, A.L. Urea cycle enzymes. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C., Beaudet, A., Sly, W. & Valle, D.) 1187–1232 (McGraw Hill, New York, 1995).

    Google Scholar 

  3. Gamble, G. & Lehninger, A.L. Transport of ornithine and citrulline across the mitochondrial membrane. J. Biol. Chem. 248 , 610–618 (1973).

    CAS  PubMed  Google Scholar 

  4. Bradford, N.M. & McGivan, J.D. Evidence for the existence of an ornithine/citrulline antiporter in rat liver mitochondria. FEBS Lett. 113, 294–298 (1980).

    Article  CAS  Google Scholar 

  5. Indiveri, C., Tonazzi, A. & Palmieri, F. Identification and purification of the ornithine/citrulline carrier from rat liver mitochondria. Eur. J. Biochem. 207, 449–454 (1992).

    Article  CAS  Google Scholar 

  6. Indiveri, C., Tonazzi, A., Stipani, I. & Palmieri, F. The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria: electrical nature and coupling of the exchange reaction with H+ translocation. Biochem. J. 327, 349– 356 (1997).

    Article  CAS  Google Scholar 

  7. Indiveri, C., Palmieri, L. & Palmieri, F. Kinetic characterization of the reconstituted ornithine carrier from rat liver mitochondria. Biochim. Biophys. Acta 1188, 293–301 (1994).

    Article  Google Scholar 

  8. Shih, V., Efron, M.L. & Moser, H.W. Hyperornithinemia, hyperammonemia, and homocitrullinuria. A new disorder of amino acid metabolism associated with myoclonic seizures and mental retardation. Am. J. Dis. Child. 117, 83–92 (1969).

    Article  CAS  Google Scholar 

  9. Fell, V., Pollitt, R.J., Sampson, G.A. & Wright, T. Ornithinemia, hyperammonemia, and homocitrullinuria. A disease associated with mental retardation and possibly caused by defective mitochondrial transport. Am. J. Dis. Child. 127, 752– 756 (1974).

    Article  CAS  Google Scholar 

  10. Lemay, J. et al. HHH syndrome: neurologic, ophthalmologic and psychological evaluation of six patients. J. Pediatr. 121, 725– 730 (1992).

    Article  CAS  Google Scholar 

  11. Shih, V.E., La Framboise, R., Mandell, R. & Pichette, J. Neonatal form of the hyperornithinaemia, hyperammonaemia and homocitrullinuria (HHH) syndrome and prenatal diagnosis. Prenat. Diagn. 12, 717–723 (1992).

    Article  CAS  Google Scholar 

  12. Zammarchi, E. et al. Neonatal onset of hyperornithinemia-hyperammonemia- homocitrullinuria syndrome with favorable outcome. J. Pediatr. 131, 440–443 (1997).

    Article  CAS  Google Scholar 

  13. Palmieri, F., Indiveri, C., Bisaccia, F. & Iacobazzi, V. Mitochondrial metabolite carrier proteins: purification, reconstitution and transport studies. Methods Enzymol. 260, 349–369 (1995).

    Article  CAS  Google Scholar 

  14. Palmieri, F. Mitochondrial carrier protein. FEBS Lett. 346, 48–54 (1994).

    Article  CAS  Google Scholar 

  15. Moualij, B., Duyckaerts, C., Lamotte-Brasseur, J. & Sluse, F.E. Phylogenetic classification of the mitochondrial carrier family of Saccharomyces cerevisiae. Yeast 13, 573– 581 (1997).

    Article  Google Scholar 

  16. Nelson, D.R., Felix, C.M. & Swanson, J.M. Highly conserved charge-pair networks in the mitochondrial carrier family. J. Mol. Biol. 277, 285– 308 (1998).

    Article  CAS  Google Scholar 

  17. Krämer, R. Structural and functional aspects of the phosphate carrier from mitochondria. Kidney Int. 49, 947–952 (1996).

    Article  Google Scholar 

  18. Schroers, A., Burkovski, A., Wohlrab, H. & Krämer, R. The phosphate carrier from yeast mitochondria. J. Biol. Chem. 273, 14269–14276 (1998).

    Article  CAS  Google Scholar 

  19. Crabeel, M., Soetens, O., De Rijcke, M., Pratiwi, R. & Pankiewicz, R. The ARG11 gene of Saccharomyces cerevisiae encodes a mitochondrial integral membrane protein required for arginine biosynthesis. J. Biol. Chem. 271, 25011–25018 (1996).

    Article  CAS  Google Scholar 

  20. Palmieri, L. et al. Identification of the yeast ARG-11 gene as a mitochondrial ornithine carrier involved in arginine biosynthesis. FEBS Lett. 410, 447–451 ( 1997).

    Article  CAS  Google Scholar 

  21. Liu, Q. & Dunlap, J.C. Isolation and analysis of the arg-113 gene of Neurospora crassa. Genetics 143, 1163–1174 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Braverman, N. et al. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nature Genet. 15, 369–376 ( 1997).

    Article  CAS  Google Scholar 

  23. Indiveri, C., Iacobazzi, V., Giangregorio, N. & Palmieri, F. Bacterial overexpression, purification and reconstitution of the carnitine/acylcarnitine carrier from rat liver mitochondria. Biochem. Biophys. Res. Commun. 249, 589–594 ( 1998).

    Article  CAS  Google Scholar 

  24. Huizing, M. et al. Cloning of the human carnitine acylcarnitine carrier cDNA and identification of the molecular defect in a patient. Am. J. Hum. Genet. 61, 1239–1245 (1997).

    Article  CAS  Google Scholar 

  25. Morris, S.M.J. et al. Regulation of mRNA levels for five urea cycle enzymes in rat liver by diet, cyclic AMP, and glucocorticoids. Arch. Biochem. Biophys. 256, 343–353 ( 1987).

    Article  CAS  Google Scholar 

  26. Schimke, R.T. Adaptive characteristics of urea cycle enzymes in the rat. J. Biol. Chem. 237, 459–463 ( 1962).

    CAS  PubMed  Google Scholar 

  27. Kozak, M. An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115, 887– 903 (1991).

    Article  CAS  Google Scholar 

  28. Cayanis, E. et al. High resolution YAC-cosmid-STS map of human chromosome 13. Genomics 47, 26–43 (1998).

    Article  CAS  Google Scholar 

  29. Shih, V.E., Mandell, R. & Herzfeld, A. Defective ornithine metabolism in cultured skin fibroblasts from patients with the syndrome of hyperornithinemia, hyperammonemia and homocitrullinuria. Clin. Chim. Acta 118, 149– 157 (1982).

    Article  CAS  Google Scholar 

  30. Weber, F.E. et al. Molecular cloning of a peroxisomal Ca2+-dependent member of the mitochondrial carrier superfamily. Proc. Natl Acad. Sci. USA 94, 8509–8514 ( 1997).

    Article  CAS  Google Scholar 

  31. Wylin, T. et al. Identification and characterization of human PMP34, a protein closely related to the peroxisomal integral membrane protein PMP47 of Candida boidinii. Eur. J. Biochem. 258, 332–338 (1998).

    Article  CAS  Google Scholar 

  32. Dionisi Vici, C., Bachmann, C., Gambarara, M., Colombo, J.P. & Sabetta, G. Hyperornithinemia-hyperammonemia- homocitrullinuria syndrome: low creatine excretion and effect of citrulline, arginine, or ornithine supplement. Pediatr. Res. 22, 364– 367 (1987).

    Article  CAS  Google Scholar 

  33. Gatfield, P.D., Taller, E., Wolfe, D.M. & Haust, D.M. Hyperornithinemia, hyperammonemia, and homocitrullinuria associated with decreased carbamyl phosphate synthetase I activity. Pediatr. Res. 9, 488–497 (1975).

    Article  CAS  Google Scholar 

  34. Simell, O., Mackenzie, S., Clow, C.L. & Scriver, C.R. Ornithine loading did not prevent induced hyperammonemia in a patient with HHH syndrome. Pediatr. Res. 19, 1283– 1287 (1985).

    Article  CAS  Google Scholar 

  35. Smith, L. et al. Hyperornithinemia, hyperammonemia, homocitrullinuria (HHH) syndrome: presentation as acute liver disease with coagulopathy. J. Pediatr. Gastroenterol. Nutr. 15, 431–436 (1992).

    Article  CAS  Google Scholar 

  36. Mitchell, G.A., Grompe, M., Lambert, M. & Tanguay, R. Hypertyrosinemia. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C., Beaudet, A., Sly, W. & Valle, D.) (McGraw-Hill, New York, in press).

  37. De Braekeleer, M. et al. Founder effect in familial hyperchylomicronemia among French Canadians of Quebec. Hum. Hered. 41, 168 –173 (1991).

    Article  CAS  Google Scholar 

  38. Bouchard, J.P. et al. Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Neuromuscul. Disord. 8, 474– 479 (1998).

    Article  CAS  Google Scholar 

  39. Morin, C. et al. Clinical, metabolic and genetic aspects of cytochrome C oxidase deficiency in Saguenay-Lac-Saint-Jean. Am. J. Hum. Genet. 52, 488–496 (1993).

    Google Scholar 

  40. Merante, F. et al. A biochemically distinct form of cytochrome oxidase (COX) deficiency in the Saguenay-Lac-Saint-Jean region of Quebec. Am. J. Hum. Genet. 53, 481–487 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Charbonneau, H. et al. Naissance d'une Population. Les Français établis au Canada au XVIIe siécle (Presses de l'Université de Montréal, Montreal, 1987).

    Google Scholar 

  42. Carter, K.C. et al. Mutation at the phenylalanine hydroxylase gene (PAH) and its use to document population genetic variation: the Quebec experience. Eur. J. Hum. Genet. 6, 61–70 (1998).

    Article  CAS  Google Scholar 

  43. Vohl, M.C. et al. Geographic distribution of French-Canadian low density lipoprotein receptor gene mutations in the Province of Quebec. Clin. Genet. 52, 1–6 (1997 ).

    Article  CAS  Google Scholar 

  44. Brais, B. et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nature Genet. 18, 164 –167 (1998).

    Article  CAS  Google Scholar 

  45. Passarella, S., Atlante, A. & Quagliariello, E. Ornithine/phosphate antiport in rat kidney mitochondria. Eur. J. Biochem. 193, 221– 227 (1990).

    Article  CAS  Google Scholar 

  46. Indiveri, C., Iacobazzi, V., Giangregorio, N. & Palmieri, F. The mitochondrial carnitine carrier protein: cDNA cloning, primary structure and comparison with other mitochondrial transport proteins. Biochem. J. 321, 713–719 ( 1997).

    Article  CAS  Google Scholar 

  47. Haust, M.D., Dewar, R.A., Gatfield, D.P. & Gordon, B.A. Hyperornithemia-hyperammonemia- homocitrullinuria (HHH) syndrome. Pathol. Res. Pract. 192, 271– 280 (1996).

    Article  CAS  Google Scholar 

  48. Metoki, K. & Hommes, F.A. The pH of mitochondria of fibroblasts from a hyperornithinaemia, hyperammonaemia, homocitrullinuria syndrome patient. J. Inherit. Metab. Dis. 7, 9– 11 (1984).

    Article  CAS  Google Scholar 

  49. Yokota, S. & Mori, M. Immunoelectron microscopical localization of ornithine transcarbamylase in hepatic parenchymal cells of the rat. Histochem. J. 18, 451–457 (1986).

    Article  CAS  Google Scholar 

  50. Powers-Lee, S.G., Mastico, R.A. & Bendayan, M. The interaction of rat liver carbamoyl phosphate synthetase and ornithine transcarbamoylase with inner mitochondrial membranes. J. Biol. Chem. 262, 15683–15688 (1987).

    CAS  PubMed  Google Scholar 

  51. Cheung, C.-W., Cohen, N.S. & Raijman, L. Channeling of urea cycle intermediates in situ in permeabilized hepatocytes. J. Biol. Chem. 264, 4038–4044 (1989).

    CAS  PubMed  Google Scholar 

  52. Hendrick, J.P., Hodges, P.E. & Rosenberg, L.E. Survey of amino-terminal proteolytic cleavage sites in mitochondrial precursor proteins: Leader peptides cleaved by two matrix proteases share a three-amino acid motif. Proc. Natl Acad. Sci. USA 86, 4056–4060 ( 1989).

    Article  CAS  Google Scholar 

  53. Brody, L.C. et al. Ornithine-δ-aminotransferase mutations causing gyrate atrophy: allelic heterogeneity and functional consequences. J. Biol. Chem. 267, 330–3307 (1992).

    Google Scholar 

Download references

Acknowledgements

We thank B. Soares for supplying EST AH007255, J. Proffitt and Vysis, Inc. for providing the 13qtel probe and S. Muscelli for assistance in preparing the manuscript. J.A.C. is supported by an NIGMS Postdoctoral Training Grant (GM07471). Part of this work was supported by a grant from the National Eye Institute (EY07414) to D.V. and NICHD Mental Retardation Research Center Core Grant (HD24061) to B.K.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Valle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camacho, J., Obie, C., Biery, B. et al. Hyperornithinaemia- hyperammonaemia- homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat Genet 22, 151–158 (1999). https://doi.org/10.1038/9658

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9658

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing