Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Maintenance of genomic methylation requires a SWI2/SNF2-like protein

Abstract

Altering cytosine methylation by genetic means leads to a variety of developmental defects in mice1, plants2,3,4,5 and fungi6,7. Deregulation of cytosine methylation also has a role in human carcinogenesis8. In some cases, these defects have been tied to the inheritance of epigenetic alterations (such as chromatin imprints and DNA methylation patterns) that do not involve changes in DNA sequence3,8,9,10. Using a forward genetic screen, we identified a gene (DDM1, decrease in DNA methylation) from the flowering plant Arabidopsis thaliana required to maintain normal cytosine methylation patterns11. Additional ddm1 alleles (som4, 5, 6, 7, 8) were isolated in a selection for mutations that relieved transgene silencing12 (E.J.R., unpublished data). Loss of DDM1 function causes a 70% reduction of genomic cytosine methylation, with most of the immediate hypomethylation occurring in repeated sequences11. In contrast, many low-copy sequences initially retain their methylation in ddm1 homozygotes, but lose methylation over time as the mutants are propagated through multiple generations by self-pollination3,13. The progressive effect of ddm1 mutations on low-copy sequence methylation suggests that ddm1 mutations compromise the efficiency of methylation of newly incorporated cytosines after DNA replication. In parallel with the slow decay of methylation during inbreeding, ddm1 mutants accumulate heritable alterations (mutations or stable epialleles) at dispersed sites in the genome that lead to morphological abnormalities3,5,14. Here we report that DDM1 encodes a SWI2/SNF2-like protein, implicating chromatin remodelling as an important process for maintenance of DNA methylation and genome integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map-based isolation of A. thaliana DDM1.
Figure 2: DDM1 structure and identification.
Figure 3: A. thaliana DDM1 encodes a SWI2/SNF2-like protein.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  Google Scholar 

  2. Finnegan, E.J., Peacock, W.J. & Dennis, E.S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc. Natl Acad. Sci. USA 93, 8449–8454 ( 1996).

    Article  CAS  Google Scholar 

  3. Kakutani, T., Jeddeloh, J.A., Flowers, S.K., Munakata, K. & Richards, E.J. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc. Natl Acad. Sci. USA 93, 12406–12411 (1996).

    Article  CAS  Google Scholar 

  4. Ronemus, M.J., Galbiati, M., Ticknor, C., Chen, J. & Dellaporta, S.L. Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273, 654–657 (1996).

    Article  CAS  Google Scholar 

  5. Kakutani, T. Genetic characterization of late-flowering traits induced by DNA hypomethylation mutation in Arabidopsis thaliana. Plant J. 12 , 1447–1451 (1998).

    Article  Google Scholar 

  6. Foss, H.M., Roberts, C.J., Claeys, K.M. & Selker, E.U. Abnormal chromosome behavior in Neurospora mutants defective in DNA methylation. Science 262, 1737– 1741 (1993).

    Article  CAS  Google Scholar 

  7. Malagnac, F. et al. A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell 91, 281– 290 (1997).

    Article  CAS  Google Scholar 

  8. Baylin, S.B., Herman, J.G., Graff, J.R., Vertino, P.M. & Issa, J.-P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196 (1998).

    Article  CAS  Google Scholar 

  9. Jacobsen, S.E. & Meyerowitz, E.M. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277, 1100–1103 (1997).

    Article  CAS  Google Scholar 

  10. Martienssen, R. Chromosomal imprinting in plants. Curr. Opin. Genet. Dev. 8, 240–244 (1998).

    Article  CAS  Google Scholar 

  11. Vongs, A., Kakutani, T., Martienssen, R.A. & Richards, E.J. Arabidopsis thaliana DNA methylation mutants. Science 260, 1926–1928 (1993).

    Article  CAS  Google Scholar 

  12. Mittelsten Scheid, O., Afsar, K. & Paszkowski, J. Release of epigenetic gene silencing by trans-acting mutations in Arabidopsis. Proc. Natl Acad. Sci. USA 95, 632–637 (1998).

    Article  CAS  Google Scholar 

  13. Jeddeloh, J.A., Bender, J. & Richards, E.J. The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Genes Dev. 12, 1714–1725 ( 1998).

    Article  CAS  Google Scholar 

  14. Richards, E.J. DNA methylation and plant development. Trends Genet. 13, 319–323 (1997).

    Article  CAS  Google Scholar 

  15. Kakutani, T., Jeddeloh, J.A. & Richards, E.J. Characterization of an Arabidopsis thaliana DNA hypomethylation mutant. Nucleic Acids Res. 23, 130–137 (1995).

    Article  CAS  Google Scholar 

  16. Pazin, M.J. & Kadonaga, J.T. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell 88, 737–740 (1997).

    Article  CAS  Google Scholar 

  17. Cairns, B.R. Chromatin remodeling machines: similar motors, ulterior motives. Trends Biochem. Sci. 23, 20–25 (1998).

    Article  CAS  Google Scholar 

  18. Aihara, T. et al. Cloning and mapping of SMARCA5 encoding hSNF2H, a novel human homologue of Drosophila ISWI. Cytogenet. Cell Genet. 81, 191–193 (1998).

    Article  CAS  Google Scholar 

  19. Jarvis, C.D. et al. A novel putative helicase produced in early murine lymphocytes. Gene 169, 203–207 (1996).

    Article  CAS  Google Scholar 

  20. Bork, P. & Koonin, E.V. An expanding family of helicases within the 'DEAD/H' superfamily. Nucleic Acids Res. 21, 751–752 (1993).

    Article  CAS  Google Scholar 

  21. Eisen, J.A., Swider, K.S. & Hanawalt, P.C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23, 2715–2723 (1995).

    Article  CAS  Google Scholar 

  22. LeRoy, G., Orphanides, G., Lane, W.S. & Reinberg, D. Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 282, 1900– 1904 (1998).

    Article  CAS  Google Scholar 

  23. Eden, S., Hashimshony, T., Keshet, I., Cedar, H. & Thorne, A.W. DNA methylation models histone acetylation. Nature 394, 842 ( 1998).

    Article  CAS  Google Scholar 

  24. Jones, P.L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187– 191 (1998).

    Article  CAS  Google Scholar 

  25. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  CAS  Google Scholar 

  26. Selker, E.U. Trichostatin A causes selective loss of DNA methylation in Neurospora. Proc. Natl Acad. Sci. USA 95, 9430– 9435 (1998).

    Article  CAS  Google Scholar 

  27. Wade, P.A., Jones, P.L., Vermaak, D. & Wolffe, A.P. A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr. Biol. 8, 843–846 (1998).

    Article  CAS  Google Scholar 

  28. Zhang, Y., LeRoy, G., Seelig, H.-P., Lane, W.S. & Reinberg, D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95, 279–289 (1998).

    Article  CAS  Google Scholar 

  29. Konieczny, A. & Ausubel, F.M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4, 403–410 ( 1993).

    Article  CAS  Google Scholar 

  30. Choi, S., Creelman, R.A., Mullet, J.E. & Wing, R.A. Construction and characterization of a bacterial artificial chromosome library of Arabidopsis thaliana. Weeds World 2, 17–20 (1995).

    CAS  Google Scholar 

  31. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Adler, J. Bender, C. Dean, D. Della-Penna, K. Dewar, J. Ecker, H. Goodman, T. Ho, L. Medrano, E. Meyerowitz, B. Osborne, G. Picard, C. Rock, R. Schmidt, M. Stammers, J. Zeevaart and the Arabidopsis Biological Resource Center at The Ohio State University for markers, materials and information that facilitated the chromosome walk to DDM1; S.K. Flowers, T. Kakutani and C. Keane for initial genetic mapping data; C. Pikaard for critical reading of the manuscript; J. Eisen for expertise and input on SNF2 molecular phylogeny; W. Barnes, J. Dover and M. Johnston for help with DNA sequencing; H.-f. Kuo for determining the sequence of ddm1-6 and ddm1-7; and O. Mittelsten Scheid and J. Paszkowski for providing the som mutant material. This work was supported by a grant from the National Science Foundation (to E.J.R.; MCB 9604972). J.A.J. and T.L.S. were supported by a Predoctoral Fellowship from the Monsanto Company and an NSF training grant (BIR 9256779).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Richards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeddeloh, J., Stokes, T. & Richards, E. Maintenance of genomic methylation requires a SWI2/SNF2-like protein . Nat Genet 22, 94–97 (1999). https://doi.org/10.1038/8803

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing