Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

X-ray structure of the Escherichia coli periplasmic 5'-nucleotidase containing a dimetal catalytic site

Abstract

The crystal structure of 5'-nucleotidase (5'-NT) from E. coli, also known as UDP-sugar hydrolase, has been determined at 1.7 Å resolution. Two zinc ions are present in the active site, which is located in a cleft between two domains. The dimetal center and a catalytic Asp-His dyad are the main players in the catalytic mechanism. Structure-based sequence comparisons show that the structure also provides a model for animal 5'-NTs, which together with other ectonucleotidases terminate the action of nucleotides as extracellular signaling substances in the nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein fold of 5'-nucleotidase (5'–NT).
Figure 2: Active-site region.
Figure 3: Structure-based sequence alignment (see Methods) of selected bacterial and animal 5'-NTs.
Figure 4: Superposition of the active-site structures of E. coli 5'-NT (green), kidney bean purple acid phosphatase (blue, PDB code 4KBP12,13), human calcineurin (yellow, PP-2B, PDB code 1AUI15), and rabbit protein phosphatase 1 (red, PDB code 1FJM14).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Zimmermann, H. Biochem. J. 285, 345–365 (1992).

    Article  CAS  Google Scholar 

  2. Zimmermann, H. Prog. Neurobiol. 49, 589–618 (1996).

    Article  CAS  Google Scholar 

  3. Kennedy, C., Todorov, L.D., Mihaylova-Todorova, S. & Sneddon, P. Trends Pharmacol. Sci. 18, 263–266 (1997).

    Article  CAS  Google Scholar 

  4. Pearson, J.D., Carleton, J.S. & Gordon, J.L. Biochem. J. 190, 421– 429 (1987).

    Article  Google Scholar 

  5. Zimmermann, H., Dowdall, M.J. & Lane, D.A. Neuroscience 4, 979– 993 (1979).

    Article  CAS  Google Scholar 

  6. Volknandt, W. et al. J. Biochem. 202, 855– 861 (1991).

    CAS  Google Scholar 

  7. Glaser, L., Melo, A. & Paul, R. J. Biol. Chem. 242, 1944–1954 (1967).

    CAS  PubMed  Google Scholar 

  8. Neu, H.C. J. Biol. Chem. 242, 3896–3904 (1967).

    CAS  PubMed  Google Scholar 

  9. Burns, D.M. & Beacham, I.R. Nucleic Acids Res. 14, 4325–4342 (1986).

    Article  CAS  Google Scholar 

  10. Koonin, E.V. Protein Sci. 3, 356–358 (1994).

    Article  CAS  Google Scholar 

  11. Sträter, N, Lipscomb, W.N., Klabunde, T. & Krebs, B. Angew. Chem. Int. Edn Engl. 35, 2024– 2055 (1996).

    Article  Google Scholar 

  12. Sträter, N., Klabunde, T., Tucker, P., Witzel, H. & Krebs, B. Science 268, 1489– 1492 (1995).

    Article  Google Scholar 

  13. Klabunde, T., Sträter, N., Fröhlich, R., Witzel, H. & Krebs, B. J. Mol. Biol. 259, 737–748 (1996).

    Article  CAS  Google Scholar 

  14. Goldberg, J. et al. Nature 376, 745–753 (1995).

    Article  CAS  Google Scholar 

  15. Egloff, M.-P., Cohen, P.T.W., Reinemer, P. & Barford, D. J. Mol. Biol. 254, 942–959 (1995).

    Article  CAS  Google Scholar 

  16. Kissinger, C.R. et al. Nature 378, 641–644 (1995).

    Article  CAS  Google Scholar 

  17. Griffith, J.P. et al. Cell 82, 507–522 (1995).

    Article  CAS  Google Scholar 

  18. Neu, H.C. Biochemistry 7, 3766–3773 (1968).

    Article  CAS  Google Scholar 

  19. Holm, L. & Sander, C. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  20. Dvorak, H.F. & Heppel, L.A. J. Biol. Chem. 243, 2647–2653 (1968).

    CAS  PubMed  Google Scholar 

  21. Klabunde, T. & Krebs, B. Struct. Bonding 89, 177–198 (1997).

    Article  CAS  Google Scholar 

  22. Ruiz, A., Hurtado, C., Ribeiro, J.M., Sillero, A. & Sillero, M.A. G. J. Bacteriol. 171 , 6703–6709 (1989).

    Article  CAS  Google Scholar 

  23. Otwinowski, Z. in Proceedings of the CCP4 study weekend: data collection and processing (eds Sawyer, L., Isaacs, N. & Bayley, S.) 56– 62 (SERC Daresbury Laboratory, Warrington, UK; 1993 ).

    Google Scholar 

  24. De La Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 ( 1997).

    Article  CAS  Google Scholar 

  25. CCP4. Acta Crystallogr. D 50, 760–763 (1994).

  26. Jones, T.A., Zou, J.Y., Cowan, S. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 ( 1991).

    Article  Google Scholar 

  27. Brünger, A.T. X–PLOR: a system for crystallography and NMR Version 3.1 (Yale University Press, New Haven, CT; 1992).

    Google Scholar 

  28. Barton, G.J. & Sternberg, M.J.E. Methods Enzymol. 183, 403–428 (1990).

    Article  CAS  Google Scholar 

  29. Barton, G.J. & Sternberg, M.J. E. Protein Eng. 1, 89–94 (1987).

    Article  CAS  Google Scholar 

  30. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  31. Meritt, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

  32. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281– 296 (1991).

    Article  CAS  Google Scholar 

  33. Gilson, M.K., Sharp, K.A. & Honig, B.H. J. Comput. Chem. 9, 327– 335 (1987).

    Article  Google Scholar 

  34. Esnouf, R.M. J. Mol. Graphics 15, 133–138 (1997).

    Google Scholar 

  35. Barton, G.J. Protein Eng. 6, 37–40 ( 1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Saenger for generous support, G. Leonard (ESRF and EMBL, Grenoble, France) for assistance with the MAD measurements, W. Rypniewski for help with the data collection at the EMBL beamline at DESY, Hamburg, and G. Bains for support during the data collection at the ESRF and for helpful comments on the manuscript. This work was supported by a grant from the Deutsche Forschungsgemeinschaft to N.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Sträter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knöfel, T., Sträter, N. X-ray structure of the Escherichia coli periplasmic 5'-nucleotidase containing a dimetal catalytic site. Nat Struct Mol Biol 6, 448–453 (1999). https://doi.org/10.1038/8253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing