Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Perception of Fourier and non-Fourier motion by larval zebrafish

Abstract

A moving grating elicits innate optomotor behavior in zebrafish larvae; they swim in the direction of perceived motion. We took advantage of this behavior, using computer-animated displays, to determine what attributes of motion are extracted by the fish visual system. As in humans, first-order (luminance-defined or Fourier) signals dominated motion perception in fish; edges or other features had little or no effect when presented with these signals. Humans can see complex movements that lack first-order cues, an ability that is usually ascribed to higher-level processing in the visual cortex. Here we show that second-order (non-Fourier) motion displays induced optomotor behavior in zebrafish larvae, which do not have a cortex. We suggest that second-order motion is extracted early in the lower vertebrate visual pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 2: Psychophysical tests for the detection of Fourier motion by zebrafish.
Figure 1: The optomotor response of zebrafish larvae does not depend on long integration times or feature displacement.
Figure 3: Contrast-defined second-order motion evokes optomotor behavior in zebrafish.
Figure 4: Flicker-defined and orientation-defined second-order motion evokes optomotor behavior in zebrafish.

Similar content being viewed by others

References

  1. Clark, D. T. Visual responses in developing zebrafish. (Univ. of Oregon Press, Eugene, Oregon, 1981).

    Google Scholar 

  2. Neuhauss, S. C. et al. Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J. Neurosci. 19, 8603–8615 (1999).

    Article  CAS  Google Scholar 

  3. Anstis, S. M. Phi movement as a subtraction process. Vision Res. 10, 1411–1430 (1970).

    Article  CAS  Google Scholar 

  4. Adelson, E. H. & Bergen, J. R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985).

    Article  CAS  Google Scholar 

  5. Reichardt, W. Autokorrelationsauswertung als funktionsprinzip des zentralnervensystems. Z. Naturforschung 12b, 447–457 (1957).

    Google Scholar 

  6. Wilson, H. R., Ferrera, V. P. & Yo, C. A psychophysically motivated model for two-dimensional motion perception. Vis. Neurosci. 9, 79–97 (1992).

    Article  CAS  Google Scholar 

  7. Hammett, S. T., Ledgeway, T. & Smith, A. T. Transparent motion from feature- and luminance-based processes. Vision Res. 33, 1119–1122 (1993).

    Article  CAS  Google Scholar 

  8. Ramachandran, V. S., Rao, V. M. & Vidyasagar, T. R. Apparent movement with subjective contours. Vision Res. 13, 1399–1401 (1973).

    Article  CAS  Google Scholar 

  9. Cavanagh, P. & Mather, G. Motion: the long and short of it. Spat. Vis. 4, 103–129 (1989).

    Article  CAS  Google Scholar 

  10. Chubb, C. & Sperling, G. Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. J. Opt. Soc. Am. A 5, 1986–2007 (1988).

    Article  CAS  Google Scholar 

  11. Ohzawa, I. Do animals see what we see? Nat. Neurosci. 2, 586–588 (1999).

    Article  CAS  Google Scholar 

  12. Albright, T. D. Form-cue invariant motion processing in primate visual cortex. Science 255, 1141–1143 (1992).

    Article  CAS  Google Scholar 

  13. Zhou, Y. X. & Baker, C. L. A processing stream in mammalian visual cortex neurons for non-Fourier responses. Science 261, 98–101 (1993).

    Article  CAS  Google Scholar 

  14. Smith, A. T., Greenlee, M. W., Singh, K. D., Kraemer, F. M. & Hennig, J. The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J. Neurosci. 18, 3816–3830 (1998).

    Article  CAS  Google Scholar 

  15. Baker, C. L. Central neural mechanisms for detecting second-order motion. Curr. Opin. Neurobiol. 9, 461–466 (1999).

    Article  CAS  Google Scholar 

  16. Easter, S. S. & Nicola, G. N. The development of vision in the zebrafish (Danio rerio). Dev. Biol. 180, 646–663 (1996).

    Article  CAS  Google Scholar 

  17. Anstis, S. M. & Rogers, B. J. Illusory reversal of visual depth and movement during changes of contrast. Vision Res. 15, 957–961 (1975).

    Article  CAS  Google Scholar 

  18. Chubb, C. & Sperling, G. Two motion perception mechanisms revealed by distance driven reversal of apparent motion. Proc. Natl. Acad. Sci. USA 86, 2985–2989 (1989).

    Article  CAS  Google Scholar 

  19. Smith, A. T. & Ledgeway, T. Separate detection of moving luminance and contrast modulations: fact or artifact? Vision Res. 37, 45–62 (1997).

    Article  CAS  Google Scholar 

  20. Scott-Samuel, N. E. & Georgeson, M. A. Does early non-linearity account for second-order motion? Vision Res. 39, 2853–2865 (1999).

    Article  CAS  Google Scholar 

  21. Shapley, R. M. & Victor, J. D. The effect of contrast on the transfer properties of cat retinal ganglion cells. J. Physiol. (Lond.) 285, 275–298 (1978).

    Article  CAS  Google Scholar 

  22. Demb, J. B., Haarsma, L., Freed, M. A. & Sterling, P. Functional circuitry of the retinal ganglion cell's nonlinear receptive field. J. Neurosci. 19, 9756–9767 (1999).

    Article  CAS  Google Scholar 

  23. Nieder, A. & Wagner, H. Perception and neuronal coding of subjective contours in the owl. Nat. Neurosci. 2, 660–663 (1999).

    Article  CAS  Google Scholar 

  24. Derrington, A. M. & Henning, B. G. Linear and non-linear mechanisms in pattern vision. Curr. Biol. 3, 800–803 (1995).

    Article  Google Scholar 

  25. Brockerhoff, S. E. et al. A behavioral screen for isolating zebrafish mutants with visual system defects. Proc. Natl. Acad. Sci. USA 92, 10545–10549 (1995).

    Article  CAS  Google Scholar 

  26. Baier, H. et al. Genetic dissection of the retinotectal projection. Development 123, 415–425 (1996).

    CAS  PubMed  Google Scholar 

  27. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).

    CAS  PubMed  Google Scholar 

  28. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mark Churchland and Nick Priebe for reading the manuscript, and Jonathan Horton and Dan Adams for comments. H.B. is a David and Lucile Packard and an Alfred P. Sloan fellow. This work was supported by the HHMI Research Resources Program and by seed money from the Department of Physiology, UCSF. M.O. and M.S. were supported by predoctoral fellowships from HHMI and NSF, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herwig Baier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orger, M., Smear, M., Anstis, S. et al. Perception of Fourier and non-Fourier motion by larval zebrafish. Nat Neurosci 3, 1128–1133 (2000). https://doi.org/10.1038/80649

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80649

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing