Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors

Abstract

A major shortcoming to the use of adeno-associated virus (rAAV) vectors is their limited packaging size. To overcome this hurdle, we split an expression cassette and cloned it into two separate vectors. The vectors contained either a nuclear localizing Escherichia coli lacZ transgene (nlslacZ) with a splice acceptor, or the human elongation factor 1α ( EF1α) gene enhancer/promoter(s) (EF1αEP) with a splice donor. We co-injected a promoter-less nlslacZ vector with a vector containing either a single EF1αEP or a double copy of the EF1αEP in a head-to-head orientation, into the portal vein of mice. Gene expression, measured by both transduction efficiency and quantitation of the recombinant protein, was as much as 60–70% of that obtained from mice that received a single vector containing a complete EFαEP/nlslacZ expression cassette. This two-vector approach may allow development of gene therapy strategies that will carry exogenous DNA sequences with large therapeutic cDNAs and/or regulatory elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of the EF1αEP/nlslacZ expression cassette, nlslacZ plasmids, and rAAV vectors.
Figure 2: Transfection of 293 cells by the nlslacZ plasmids.
Figure 3: Xgal staining of the liver tissues from the rAAV-treated C57BL/6 rag1 mice.
Figure 4: RNA analyses of mouse livers transduced with AAV-Pless-nlsLacZ and/or EF1αEP rAAV vector.
Figure 5: Possible mechanisms of in vivo enhancement of transgene expression from AAV-Pless-nlsLacZ vector by AAV-EF1αEP or AAV-(EF1αEP) 2 vector.

Similar content being viewed by others

References

  1. Herzog, R.W. et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc. Natl. Acad. Sci. USA 94, 5804– 5809 (1997).

    Article  CAS  Google Scholar 

  2. Herzog, R.W. et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat. Med. 5, 56–63 ( 1999).

    Article  CAS  Google Scholar 

  3. Nakai, H. et al. Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood 91, 4600 –4607 (1998).

    CAS  PubMed  Google Scholar 

  4. Russell, D. & Kay, M.A. rAAV and hematology. Blood 94, 864–874 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Snyder, R.O. et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat. Genet. 16, 270–276 ( 1997).

    Article  CAS  Google Scholar 

  6. Snyder, R.O. et al. Efficient and stable adeno-associated virus-mediated transduction in the skeletal muscle of adult immunocompetent mice. Hum. Gene Ther. 8, 1891–1900 ( 1997).

    Article  CAS  Google Scholar 

  7. Snyder, R.O. et al. Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nat. Med. 5, 64–70 (1999).

    Article  CAS  Google Scholar 

  8. Kessler, P.D. et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc. Natl. Acad. Sci. USA 93, 14082–14087 (1996).

    Article  CAS  Google Scholar 

  9. Rendahl, K.G. et al. Regulation of gene expression in vivo following transduction by two separate rAAV vectors. Nat. Biotechnol. 16, 757–761 (1998).

    Article  CAS  Google Scholar 

  10. Watson, G.L. et al. Treatment of lysosomal storage disease in MPS VII mice using a recombinant adeno-associated virus. Gene Ther. 5, 1642 –1649 (1998).

    Article  CAS  Google Scholar 

  11. Miao, C.H. et al. Non-random transduction of recombinant adeno-associated viral vectors in mouse hepatocytes in vivo: cell cycling does not influence hepatocyte transduction. J. Virol. 74, 3793–3803 (2000).

    Article  CAS  Google Scholar 

  12. Nakai, H., Iwaki, Y., Kay, M.A. & Couto, L.B. Isolation of recombinant adeno-associated virus vector–cellular DNA junctions from mouse liver. J. Virol. 73, 5438–5447 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Miao, C.H. et al. The kinetics of rAAV integration in the liver. Nat. Genet. 19, 13–15 (1998).

    Article  CAS  Google Scholar 

  14. Duan, D. et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J. Virol. 72, 8568– 8577 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang, J. et al. Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. J. Virol. 73, 9468–9477 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Flotte, T.R. et al. Expression of the cystic fibrosis transmembrane conductance regulator from a novel adeno-associated virus promoter. J. Biol. Chem. 268, 3781–3790 (1993).

    CAS  PubMed  Google Scholar 

  17. Kim, D.W., Uetsuki, T., Kaziro, Y., Yamaguchi, N. & Sugano, S. Use of the human elongation factor 1α promoter as a versatile and efficient expression system. Gene 91, 217–223 (1990).

    Article  CAS  Google Scholar 

  18. Fan, D.S. et al. Behavioral recovery in 6-hydroxydopamine-lesioned rats by cotransduction of striatum with tyrosine hydroxylase and aromatic L-amino acid decarboxylase genes using two separate adeno-associated virus vectors. Hum. Gene Ther. 9, 2527–2535 ( 1998).

    Article  CAS  Google Scholar 

  19. Burton, M. et al. Coexpression of factor VIII heavy and light chain adeno-associated viral vectors produces biologically active protein. Proc. Natl. Acad. Sci. USA 96, 12725–12730 ( 1999).

    Article  CAS  Google Scholar 

  20. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263 –267 (1996).

    Article  CAS  Google Scholar 

  21. Russell, D.W. & Hirata, R.K. Human gene targeting by viral vectors. Nat. Genet. 18, 325–330 (1998).

    Article  CAS  Google Scholar 

  22. Matsushita, T. et al. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther. 5, 938– 945 (1998).

    Article  CAS  Google Scholar 

  23. Wigler, M. et al. Transformation of mammalian cells with an amplifiable dominant-acting gene. Proc. Natl. Acad. Sci. USA 77, 3567– 3570 (1980).

    Article  CAS  Google Scholar 

  24. Kay, M.A. et al. Hepatic gene therapy: persistent expression of human α1- antitrypsin in mice after direct gene delivery in vivo. Hum. Gene Ther. 3, 641–647 (1992).

    Article  CAS  Google Scholar 

  25. Gorski, K., Carneiro, M. & Schibler, U. Tissue-specific in vitro transcription from the mouse albumin promoter. Cell 47, 767– 776 (1986).

    Article  CAS  Google Scholar 

  26. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 ( 1951).

    CAS  Google Scholar 

  27. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual, Edn. 2 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1989).

Download references

Acknowledgements

We thank Sally Fuess for technical assistance. This work was supported by NIH ROI HL53682.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Kay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakai, H., Storm, T. & Kay, M. Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat Biotechnol 18, 527–532 (2000). https://doi.org/10.1038/75390

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75390

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing