Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-yield production of a human therapeutic protein in tobacco chloroplasts

Abstract

Transgenic plants have become attractive systems for production of human therapeutic proteins because of the reduced risk of mammalian viral contaminants, the ability to do large scale-up at low cost, and the low maintenance requirements. Here we report a feasibility study for production of a human therapeutic protein through transplastomic transformation technology, which has the additional advantage of increased biological containment by apparent elimination of the transmission of transgenes through pollen. We show that chloroplasts can express a secretory protein, human somatotropin, in a soluble, biologically active, disulfide-bonded form. High concentrations of recombinant protein accumulation are observed (>7% total soluble protein), more than 300-fold higher than a similar gene expressed using a nuclear transgenic approach. The plastid-expressed somatotropin is nearly devoid of complex post-translational modifications, effectively increasing the amount of usable recombinant protein. We also describe approaches to obtain a somatotropin with a non-methionine N terminus, similar to the native human protein. The results indicate that chloroplasts are a highly efficient vehicle for the potential production of pharmaceutical proteins in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of transplastomic plants carrying recombinant hST genes integrated into the plastid genome.
Figure 2: Accumulation of hST protein in transplastomic lines.
Figure 3: Recombinant chloroplast hST contains the correct disulfide bonds.
Figure 4: Plastid-expressed hST is biologically active.
Figure 5: Chloroplast transgenes are maternally inherited.

Similar content being viewed by others

References

  1. Goddijn, O.J.M. & Pen, J. Plants as bioreactors. TIBTECH 13, 379–387 (1995).

    Article  CAS  Google Scholar 

  2. Mason, H.S. & Arntzen, C.J. Transgenic plants as vaccine production systems. TIBTECH 13, 388– 392 (1995).

    Article  CAS  Google Scholar 

  3. Cramer, C.L. et al. Bioproduction of human enzymes in transgenic tobacco. Ann. NY Acad. Sci. 792, 63–72 (1996).

    Article  Google Scholar 

  4. Ma, J.K.-C. & Hein, M.B. Antibody production and engineering in plants. Ann. NY Acad. Sci. 792, 73– 81 (1996).

    Article  Google Scholar 

  5. Zeitlin, L. et al. A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat. Biotechnol. 16, 1361–1364 (1998).

    Article  CAS  Google Scholar 

  6. McCormick, A.A. et al. Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants. Proc. Natl. Acad. Sci. USA 96, 703– 708 (1999).

    Article  CAS  Google Scholar 

  7. Tacket, C.O. et al. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat. Med. 4, 607–609 (1998).

    Article  CAS  Google Scholar 

  8. Svab, Z., Hajdukiewicz, P.T.J. & Maliga, P. Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA 87, 8526– 8530 (1990).

    Article  CAS  Google Scholar 

  9. Svab, Z. & Maliga, P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90, 913–917 (1993).

    Article  CAS  Google Scholar 

  10. Sikdar, S.R., Serino, G., Chaudhuri, S. & Maliga, P. Plastid transformation in Arabidopsis thaliana. Plant Cell Reports 18, 20–24 ( 1998).

    Article  CAS  Google Scholar 

  11. Sidorov, V.A. et al. Stable chloroplast transformation in potato, use of green fluorescent protein as a plastid marker. Plant J. 19 , 209–216 (1999).

    Article  CAS  Google Scholar 

  12. Maliga, P. Towards plastid transformation in flowering plants. TIBTECH 11, 101–106 (1993).

    Article  CAS  Google Scholar 

  13. Scott, S.E. & Wilkinson, M.J. Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa . Nat. Biotechnol. 17, 390– 392 (1999).

    Article  CAS  Google Scholar 

  14. Daniell, H., Datta, R., Varma, S., Gray, S. & Lee, S.-B. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol. 16, 345–348 (1998).

    Article  CAS  Google Scholar 

  15. Ruelland, E. & Miginiac-Maslow, M. Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition? Trends Plant Sci. 4, 136–141 (1999).

    Article  CAS  Google Scholar 

  16. Tritos, N.A. & Mantzoros, C.S. Recombinant growth hormone: old and novel uses. Am. J. Med. 105, 44– 57 (1998).

    Article  CAS  Google Scholar 

  17. Chawla, R.K., Parks, J.S. & Rudman, D. Structural variants of human growth hormone: biochemical, genetic and clinical aspects. Ann. Rev. Med. 34, 519–547 (1983).

    Article  CAS  Google Scholar 

  18. Cronin, M.J. Pioneering recombinant growth hormone manufacturing: pounds produced per mile of height. J. Pediatr. 131, S5– S7 (1997).

    Article  CAS  Google Scholar 

  19. Goeddel, D.V. et al. Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone. Nature 281, 544–548 (1979).

    Article  CAS  Google Scholar 

  20. Gray, G.L., McKeown, K.A., Jones, A.J.S., Seeburg, P.H. & Heyneker, H.L., Pseudomonas aeruginosa secretes and correctly processes human growth hormone. Bio/Technology 2, 161–165 ( 1984).

    CAS  Google Scholar 

  21. Becker, G.W. & Hsiung, H.M. Expression, secretion and folding of human growth hormone in Escherichia coli. FEBS Lett. 204, 145–150 ( 1986).

    Article  CAS  Google Scholar 

  22. Baker, R.T. Protein expression using ubiquitin fusion and cleavage. Curr. Opin. Biotechnol. 7, 541–546 ( 1996).

    Article  CAS  Google Scholar 

  23. Vierstra, R.D. Proteolysis in plants: mechanisms and functions. Plant Mol. Biol. 32, 275–302 ( 1996).

    Article  CAS  Google Scholar 

  24. Staub, J.M. & Maliga, P. Translation of psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant J. 6, 547–553 ( 1994).

    Article  CAS  Google Scholar 

  25. Zoubenko, O.V., Allison, L.A., Svab, Z. & Maliga, P., Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res. 22, 3819–3824 ( 1994).

    Article  CAS  Google Scholar 

  26. Lei, J., Chen, D.A. & Regnier, F.E. Rapid verification of disulfide linkages in recombinant human growth hormone by tandem column tryptic mapping. J. Chromatogr. 808, 121–131 ( 1998).

    Article  CAS  Google Scholar 

  27. Kim, J. & Mayfield, S.P. Protein disulfide isomerase as a regulator of chloroplast translational activation. Science 278, 1954–1957 (1997).

    Article  CAS  Google Scholar 

  28. Moore, J.A. et al. Equivalent potency and pharmokinetics of recombinant human growth hormones with or without an N-terminal methionine. Endocrinology 122, 2920–2926 ( 1988).

    Article  CAS  Google Scholar 

  29. Meinnel, T., Mechulam, Y. & Blanquet, S. Methionine as translation start signal: a review of the enzymes of the pathway in Escherichia coli. Biochimie 75, 1061–1075 ( 1993).

    Article  CAS  Google Scholar 

  30. McBride, K.E. et al. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technology 13, 362–365 (1995).

    CAS  PubMed  Google Scholar 

  31. Guda, C., Lee, S.-B. & Daniell, H. Stable expression of a biodegradable protein-based polymer in tobacco chloroplasts. Plant Cell Reports 19, 257–262 (2000).

  32. Smyth, D.R. Gene silencing: cosuppression at a distance. Curr. Biol. 7, R793–795 (1997).

    Article  CAS  Google Scholar 

  33. Bosch, D., Smal, J. & Krebbers, E. A trout growth hormone is expressed, correctly folded and partially glycosylated in the leaves but not the seeds of transgenic plants. Transgenic Res. 3, 304– 310 (1994).

    Article  CAS  Google Scholar 

  34. Studier, F.W., Rosenberg, A.H., Dunn, J.J. & Dubendorff, J.W. Use of T7 RNA Polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89 (1990).

    Article  CAS  Google Scholar 

  35. Dattani, M.T. et al. G120R, a human growth hormone antagonist, shows zinc-dependent agonist and antagonist activity on Nb2 cells. J. Biol. Chem. 270, 9222–9226 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Robin Weinberg for a ubiquitin–hST fusion plasmid, Titik Dian for assistance with protein purification, Dawn Dufield for mass spectrometry analysis, Skooter Jennings for amino acid analysis, and Pal Maliga, Rutgers University, for the pPRV plasmids. We also thank Michael Montague for a critical reading of the manuscript and Ganesh Kishore, Michael Montague, Julio Baez, Doug Taylor, and Stephen Padgette for support throughout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Staub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staub, J., Garcia, B., Graves, J. et al. High-yield production of a human therapeutic protein in tobacco chloroplasts . Nat Biotechnol 18, 333–338 (2000). https://doi.org/10.1038/73796

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73796

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing