Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A genome-wide survey of RAS transformation targets

Abstract

An important aspect of multi-step tumorigenesis is the mutational activation of genes of the RAS family, particularly in sporadic cancers of the pancreas, colon, lung and myeloid system1. RAS genes encode small GTP-binding proteins that affect gene expression in a global way by acting as major switches in signal transduction processes, coupling extracellular signals with transcription factors2,3,4. Oncogenic forms of RAS are locked in their active state and transduce signals essential for transformation, angiogenesis, invasion and metastasis via downstream pathways involving the RAF/MEK/ERK cascade of cytoplasmic kinases, the small GTP-binding proteins RAC and RHO, phosphatidylinositol 3-kinase and others5,6. We have used subtractive suppression hybridization (SSH), a PCR-based cDNA subtraction technique7, to contrast differential gene expression profiles in immortalized, non-tumorigenic rat embryo fibroblasts and in HRAS- transformed cells. Sequence and expression analysis of more than 1,200 subtracted cDNA fragments revealed transcriptional stimulation or repression of 104 ESTs, 45 novel sequences and 244 known genes in HRAS- transformed cells compared with normal cells. Furthermore, we identified common and distinct targets in cells transformed by mutant HRAS, KRAS and NRAS, as well as 61 putative target genes controlled by the RAF/MEK/ERK pathway in reverted cells treated with the MEK-specific inhibitor PD 98059.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of normal 208F fibroblasts (left) and HRAS-transformed FE-8 cells, untreated (middle) and incubated with the MEK-inhibitor PD 98059 (right).
Figure 2: Effects of the Ras/Raf/MEK signalling pathway and of different RAS isoforms on selected target gene transcription.
Figure 3: The 208F cell lines transformed with oncogenic HRAS, KRAS and NRAS exhibit similar neoplastic characteristics.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bos, J.L. Ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  2. Barbacid, M. Ras genes. Annu. Rev. Biochem. 56, 779– 827 (1987).

    Article  CAS  Google Scholar 

  3. Abdellatif, M., MacLellan, W.R. & Schneider, M.D. p21 Ras as a governor of global gene expression. J. Biol. Chem. 269, 15423–15426 (1994).

    CAS  PubMed  Google Scholar 

  4. Malumbres, M. & Pellicer, A. Ras pathways to cell cycle control and cell transformation. Front. Biosci. 3, 887–912 (1998).

    Article  Google Scholar 

  5. Khosravi, F.R., Campbell, S., Rossman, K.L. & Der, C.J. Increasing complexity of Ras signal transduction: involvement of Rho family proteins. Adv. Cancer Res. 72, 57– 107 (1998).

    Google Scholar 

  6. Downward, J. in G Proteins, Cytoskeleton and Cancer (eds Maruta, H. & Kohama, K.) 171–183 (R.G. Landes, Austin, 1998).

  7. Diatchenko, L. et al. Suppression subtractive hybridization: a method for generating differentially regulated or tssue-specific cDNA probes and libraries. Proc. Natl Acad. Sci. USA 93, 6025– 6030 (1996).

    Article  CAS  Google Scholar 

  8. Groudine, M. & Weintraub, H. Activation of cellular genes by avian RNA tumor viruses. Proc. Natl Acad. Sci. USA 77, 5351–5354 (1980).

    Article  CAS  Google Scholar 

  9. Augenlicht, L.H. et al. Expression of cloned sequences in biopsies of human colonic tissue and in colonic carcinoma cells induced to differentiate in vitro. Cancer Res. 47, 6017–6021 (1987).

    CAS  PubMed  Google Scholar 

  10. Zhang, L. et al. Gene expression profiles in normal and cancer cells. Science 276, 1268–1271 ( 1997).

    Article  CAS  Google Scholar 

  11. Chang, D.D., Park, N.H., Denny, C.T., Nelson, S.F. & Pe, M. Characterization of transformation related genes in oral cancer cells. Oncogene 16, 1921– 1930 (1998).

    Article  CAS  Google Scholar 

  12. von Stein, O.D., Thies, W.G. & Hofmann, M. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res. 25, 2598–2602 (1997).

    Article  CAS  Google Scholar 

  13. Denko, N.C., Giaccia, A.J., Stringer, J.R. & Stambrook, P.J. The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc. Natl Acad. Sci. USA 91 , 5124–5128 (1994).

    Article  CAS  Google Scholar 

  14. Denko, N., Stringer, J., Wani, M. & Stambrook, P. Mitotic and post mitotic consequences of genomic instability induced by oncogenic Ha-ras. Somat. Cell Mol. Genet. 21, 241– 253 (1995).

    Article  CAS  Google Scholar 

  15. Quade, K. Transformation of mammalian cells by avian myelocytomatosis virus and avian erythroblastosis virus. Virology 98, 461 –465 (1979).

    Article  CAS  Google Scholar 

  16. Griegel, S., Traub, O., Willecke, K. & Schäfer, R. Suppression and re-expression of transformed phenotype in hybrids of Ha-ras1 transformed Rat-1 cells and early passage rat embryo fibroblasts. Int. J. Cancer 38, 697–705 ( 1986).

    Article  CAS  Google Scholar 

  17. Sers, C. et al. Growth-inhibitory activity and downregulation of the class II tumor-suppressor gene H-rev107 in tumor cell lines and experimental tumors. J. Cell Biol. 136, 935– 944 (1997).

    Article  CAS  Google Scholar 

  18. Sager, R. Expression genetics in cancer: shifting the focus from DNA to RNA. Proc. Natl Acad. Sci. USA 94, 952– 955 (1997).

    Article  CAS  Google Scholar 

  19. Dudley, D.T., Pang, L., Decker, S.J., Bridges, A.J. & Saltiel, A.R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl Acad. Sci. USA 92, 7686–7689 (1995).

    Article  CAS  Google Scholar 

  20. Adams, A.T. & Auersperg, N. A cell line, ROSE 199, derived from normal rat ovarian surface epithelium. Exp. Cell Biol. 53, 181–188 (1985).

    CAS  PubMed  Google Scholar 

  21. Liu, H.S., Scrable, H., Villaret, D.B., Lieberman, M.A. & Stambrook, P.J. Control of Ha-ras-mediated mammalian cell transformation by Escherichia coli regulatory elements. Cancer Res. 52, 983–989 ( 1992).

    CAS  PubMed  Google Scholar 

  22. Patton, S.E. et al. Activation of the ras-mitogen-activated protein kinase pathway and phosphorylation of ets-2 at position threonine 72 in human ovarian cancer cell lines. Cancer Res. 58, 2253– 2259 (1998).

    CAS  PubMed  Google Scholar 

  23. Clark, G.J. & Der, C.J. Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res. Treat. 35, 133–144 ( 1995).

    Article  CAS  Google Scholar 

  24. DeClue, J.E. et al. Abnormal regulation of mammalian p21(ras) contributes to malignant tumor growth in Vonrecklinghausen (Type-1) neurofibromatosis. Cell 69, 265–273 ( 1992).

    Article  CAS  Google Scholar 

  25. Puil, L. et al. BCR-ABL oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J. 13, 764– 773 (1994).

    Article  CAS  Google Scholar 

  26. Jung, J.U. & Desrosiers, R.C. Association of the viral oncoprotein STP-C488 with cellular ras. Mol. Cell. Biol. 15, 6506– 6512 (1995).

    Article  CAS  Google Scholar 

  27. Fambrough, D., McClure, K., Kazlauskas, A. & Lander, E.S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97, 727–741 (1999).

    Article  CAS  Google Scholar 

  28. Iyer, V.R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83– 87 (1999).

    Article  CAS  Google Scholar 

  29. Husmann, K. et al. Transcriptional and translational downregulation of H-REV107, a class II tumour suppressor gene located on human chromosome 11q11–12. Oncogene 17, 1305–1312 (1998).

    Article  CAS  Google Scholar 

  30. Souyri, M. et al. Biological effects of a murine retrovirus carrying an activated N-ras gene of human origin. Virology 158, 69– 78 (1987).

    Article  CAS  Google Scholar 

  31. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156– 159 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Petermann, J. Keil and K. Skultety for technical assistance; R. Brinckmann for sequencing; C. Schlüns for computing; F. Leenders and F. Theuring for help with phospho-image analysis; and M. Dietel for generous support. Our work was supported by Deutsche Krebshilfe (grant 10-332-Schä I to R.S.), Krebsliga des Kantons Zürich (grant to R.S.), Studienstiftung des Deutschen Volkes and Forschungsförderung der Charité (to J.Z.), and Berliner Krebsgesellschaft (grant to R.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold Schäfer.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuber, J., Tchernitsa, O., Hinzmann, B. et al. A genome-wide survey of RAS transformation targets. Nat Genet 24, 144–152 (2000). https://doi.org/10.1038/72799

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing