Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BMPs inhibit neurogenesis by a mechanism involving degradation of a transcription factor

Abstract

Bone morphogenetic proteins (BMPs), negative regulators of neural determination in the early embryo, were found to be potent inhibitors of neurogenesis in olfactory epithelium (OE) cultures. BMPs 2, 4 or 7 decreased the number of proliferating progenitor cells and blocked production of olfactory receptor neurons (ORNs). Experiments suggested that this effect was due to an action of BMPs on an early-stage progenitor in the ORN lineage. Further analysis revealed that progenitors exposed to BMPs rapidly (< 2 h) lost MASH1, a transcription factor known to be required for the production of ORNs. This disappearance was due to proteolysis of existing MASH1 protein, but new gene expression was required to trigger it. The data suggest a novel mechanism of BMP action, whereby the induced degradation of an essential transcription factor results in premature termination of a neuronal lineage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of neuronal colony formation requires early addition of BMP4.
Figure 2: Effects of BMP4 on OE neuronal progenitor cells and ORNs.
Figure 3: BMP4 causes a rapid decrease in MASH1 immunoreactivity in OE neuronal progenitors.
Figure 4: BMP-mediated decrease in MASH1 immunoreactivity is due to loss of MASH1 protein.
Figure 5: MASH1 degradation is via proteasome-mediated proteolysis; downregulation of MASH1 immunoreactivity by BMP4 is dependent on transcription and translation.

Similar content being viewed by others

References

  1. Caviness, V. S., Takahashi, T. & Nowakowski, R. S. Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci. 18, 379–383 (1995).

    Article  CAS  Google Scholar 

  2. Temple, S. & Qian, X. bFGF, neurotrophins, and the control of cortical neurogenesis. Neuron 15, 249–252 (1995).

    Article  CAS  Google Scholar 

  3. Schwartz-Levey, S., Chikaraishi, D. M. & Kauer, J. S. Characterization of potential precursor populations in the mouse olfactory epithelium using immunocytochemistry and autoradiography. J. Neurosci. 11, 3556– 3564 (1991).

    Article  CAS  Google Scholar 

  4. Schwob, J. E., Szumowski, K. E. M. & Stasky, A. A. Olfactory sensory neurons are trophically dependent on the olfactory bulb for their prolonged survival. J. Neurosci. 12, 3896–3919 (1992).

    Article  CAS  Google Scholar 

  5. Gordon, M. K., Mumm, J. S., Davis, R. A., Holcomb, J. D. & Calof, A. L. Dynamics of MASH1 expression in vitro and in vivo suggest a non-stem cell site of MASH1 action in the olfactory receptor neuron lineage. Mol. Cell. Neurosci. 6, 363–379 (1995).

    Article  CAS  Google Scholar 

  6. Mumm, J. S., Shou, J. & Calof, A. L. Colony-forming progenitors from mouse olfactory epithelium: Evidence for feedback regulation of neuron production. Proc. Natl. Acad. Sci. USA 93, 11167–11172 (1996).

    Article  CAS  Google Scholar 

  7. Reh, T. A. & Tully, T. Regulation of tyrosine hydroxylase-containing amacrine cell number in larval frog retina. Dev. Biol. 114, 463–469 (1986).

    Article  CAS  Google Scholar 

  8. Hawley, S. H. B. et al. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev. 9, 2923–2935 (1995).

    Article  CAS  Google Scholar 

  9. Wilson, P. A. & Hemmati-Brivanlou, A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376, 331–336 (1995).

    Article  CAS  Google Scholar 

  10. Furuta, Y., Piston, D. W. & Hogan, B. L. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124, 2203–2212 (1997).

    CAS  PubMed  Google Scholar 

  11. Li, W., Cogswell, C. A. & LoTurco, J. J. Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J. Neurosci. 18, 8853–8862 (1998).

    Article  CAS  Google Scholar 

  12. Graham, A., Francis-West, P., Brickell, P. & Lumsden, A. The signaling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372, 684– 686 (1994).

    Article  CAS  Google Scholar 

  13. Calof, A. L., Mumm, J. S., Rim, P. C. & Shou, J. in The Neuron in Tissue Culture (ed. Haynes, L.) 23–44 (Wiley, Chichester, 1999).

    Google Scholar 

  14. DeHamer, M., Guevara, J., Hannon, K., Olwin, B. & Calof, A. L. Genesis of olfactory receptor neurons: Regulation of progenitor cell divisions by fibroblast growth factors. Neuron 13, 1083–1097 (1994).

    Article  CAS  Google Scholar 

  15. Holcomb, J. D., Mumm, J. S. & Calof, A. L. Apoptosis in the neuronal lineage of the mammalian olfactory epithelium: regulation in vivo and in vitro. Dev. Biol. 172, 307–323 (1995).

    Article  CAS  Google Scholar 

  16. Dewulf, N. et al. Distinct spatial and temporal expression patterns of two type I receptors for bone morphogenetic proteins during mouse embryogenesis. Endocrinology 136, 2652– 2663 (1995).

    Article  CAS  Google Scholar 

  17. Helder, M. N. et al. Expression pattern of Osteogenic Protein-1 (Bone Morphogenetic Protein-7) in human and mouse development. J. Histochem. Cytochem. 43, 1035–1044 (1995).

    Article  CAS  Google Scholar 

  18. Zhang, D., Mehler, M. F., Song, Q. & Kessler, J. A. Development of bone morphogenetic protein receptors in the nervous system and possible roles in regulating trkC expression. J. Neurosci. 18, 3314–3326 (1998).

    Article  CAS  Google Scholar 

  19. Wu, D. K. & Oh, S.-H. Sensory organ generation in the chick inner ear. J. Neurosci. 16, 6454– 6462 (1996).

    Article  CAS  Google Scholar 

  20. Kingsley, D. M. The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 8, 133–146 (1994).

    Article  CAS  Google Scholar 

  21. Arkell, R. & Beddington, R. S. P. BMP-7 influences pattern and growth of the developing hindbrain of mouse embryos. Development 124, 1–12 (1997).

    CAS  PubMed  Google Scholar 

  22. Calof, A. L., Mumm, J. S., Rim, P. C. & Shou, J. The neuronal stem cell of the olfactory epithelium. J. Neurobiol. 36, 190–205 (1998).

    Article  CAS  Google Scholar 

  23. Calof, A. L. et al. Factors regulating neurogenesis and programmed cell death in mouse olfactory epithelium. Ann. NY Acad. Sci. 855, 226–229 (1998).

    Article  CAS  Google Scholar 

  24. Pixley, S. K. CNS glial cells support in vitro survival, division, and differentiation of dissociated olfactory neuronal progenitor cells. Neuron 8, 1191–1204 (1992).

    Article  CAS  Google Scholar 

  25. Calof, A. L. & Chikaraishi, D. M. Analysis of neurogenesis in a mammalian neuroepithelium: proliferation and differentiation of an olfactory neuron precursor in vitro. Neuron 3, 115–127 (1989).

    Article  CAS  Google Scholar 

  26. Cau, E., Gradwohl, G., Fode, C. & Guillemot, F. Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124, 1611–1621 (1997).

    CAS  PubMed  Google Scholar 

  27. Guillemot, F. et al. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476 (1993).

    Article  CAS  Google Scholar 

  28. Lo, L. C., Johnson, J. E., Wuenschell, C. W., Saito, T. & Anderson, D. J. Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev. 5, 1524–1537 (1991).

    Article  CAS  Google Scholar 

  29. Zimmerman, L. B., De Jesus-Escobar, J. M. & Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996).

    Article  CAS  Google Scholar 

  30. Weissman, A. M. Regulating protein degradation by ubiquitination. Immunol. Today 18, 189–198 (1997).

    Article  CAS  Google Scholar 

  31. Rock, K. L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771 (1994).

    Article  CAS  Google Scholar 

  32. Fenteany, G. et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731 (1995).

    Article  CAS  Google Scholar 

  33. Kretzschmar, M. & Massague, J. SMADs: mediators and regulators of TGF-β signaling. Curr. Opin. Genet. Dev. 8, 103–111 (1998).

    Article  CAS  Google Scholar 

  34. Lo, L. C., Sommer, L. & Anderson, D. J. MASH1 maintains competence for BMP2-induced neuronal differentiation in post-migratory neural crest cells. Curr. Biol. 7, 440–450 (1997).

    Article  CAS  Google Scholar 

  35. Varley, J. E., Wehby, R. G., Rueger, D. C. & Maxwell, G. D. Number of adrenergic and Islet-1 immunoreactive cells is increased in avian trunk neural crest cultures in the presence of human recombinant Osteogenic Protein-1. Develop. Dynam. 203, 434– 447 (1995).

    Article  CAS  Google Scholar 

  36. Gross, R. E. et al. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606 (1996).

    Article  CAS  Google Scholar 

  37. Shah, N. M., Groves, A. K. & Anderson, D. J. Alternative neural crest cell fates are instructively promoted by TGFβ superfamily members. Cell 85, 331–343 (1996).

    Article  CAS  Google Scholar 

  38. Marazzi, G., Wang, Y. & Sassoon, D. Msx2 is a transcriptional regulator in the BMP4-mediated programmed cell death pathway. Dev. Biol. 186, 127–138 (1997).

    Article  CAS  Google Scholar 

  39. Ström, A., Castella, P., Rockwood, J., Wagner, J. & Caudy, M. Mediation of NGF signaling by post-translation inhibition of HES-1, a basic helix-loop-helix repressor of neuronal differentiation. Genes Dev. 11, 3168–3181 (1997).

    Article  Google Scholar 

  40. Engel, M. E., Datta, P. K. & Moses, H. L. RhoB is stabilized by transforming growth factor β and antagonizes transcriptional activation. J. Biol. Chem. 273, 9921–9926 (1998).

    Article  CAS  Google Scholar 

  41. Alkalay, I. et al. Stimulation-dependent IκBa phosphorylation marks the NF-κB inhibitor for degradation via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 92, 10599– 10603 (1995).

    Article  CAS  Google Scholar 

  42. Kanegae, Y., Tavares, A. T., Belmonte, J. C. I. & Verma, I. M. Role of Rel/NF-κB transcription factors during the outgrowth of the vertebrate limb. Nature 392, 611– 614 (1998).

    Article  CAS  Google Scholar 

  43. Bushdid, P. B. et al. Inhibition of NF-κB activity results in disruption of the apical ectodermal ridge and aberrant limb morphogenesis. Nature 392, 615–618 (1998).

    Article  CAS  Google Scholar 

  44. Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797– 3804 (1997).

    Article  CAS  Google Scholar 

  45. Lee, J. E. Basic helix-loop-helix genes in neural development. Curr. Opin. Neurobiol. 7, 13–20 (1997).

    Article  Google Scholar 

  46. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  47. Kim, S., Magendantz, M., Katz, W. & Solomon, F. Formation of the chicken erythrocyte marginal band in vivo: orgins of a cytoplasmic microtubule structure. J. Cell Biol. 104, 51–59 (1987).

    Article  CAS  Google Scholar 

  48. Clark, M. S., Lanigan, T. M., Page, N. M. & Russo, A. F. Induction of a serotonergic and neuronal phenotype in thyroid C-cells. J. Neurosci. 15, 6167–6178 (1995).

    Article  CAS  Google Scholar 

  49. Magae, J. et al. Transcriptional squelching by ectopic expression of E2F-1 and p53 is alleviated by proteasome inhibitors MG-132 and lactacystin. Oncogene 15, 759–769 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Youn Kim for help with experiments, and to Arthur Lander for suggestions regarding these studies. We thank Genetics Institute for the gift of recombinant human BMPs, Richard Harland for the gift of recombinant Xenopus noggin, David Anderson for anti-MASH1 hybridoma and Frank Solomon for rabbit antiserum to β-tubulin. This work was supported by a grant to A.L.C. from the Institute on Deafness and Other Communication Disorders of the N.I.H. (DC03583).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne L. Calof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shou, J., Rim, P. & Calof, A. BMPs inhibit neurogenesis by a mechanism involving degradation of a transcription factor. Nat Neurosci 2, 339–345 (1999). https://doi.org/10.1038/7251

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing