Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Receptors with opposing functions are in postsynaptic microdomains under one presynaptic terminal

Abstract

Fast excitatory synaptic transmission through vertebrate autonomic ganglia is mediated by postsynaptic nicotinic acetylcholine receptors (nAChRs). We demonstrate a unique postsynaptic receptor microheterogeneity on chick parasympathetic ciliary ganglion neurons—under one presynaptic terminal, nAChRs and glycine receptors formed separate but proximal clusters. Terminals were loaded with [3H]glycine via the glycine transporter-1 (GlyT-1), which localized to the cholinergic presynaptic terminal membrane; depolarization evoked [3H]glycine release that was calcium independent and blocked by the GlyT-1 inhibitor sarcosine. Ganglionic synaptic transmission mediated by nAChRs was attenuated by glycine. Coexistence of separate clusters of receptors with opposing functions under one terminal contradicts Dale's principle and provides a new mechanism for modulating synaptic activity in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ultrastructural localization of nAChRs, GlyRs and gephyrin at discrete postsynaptic membrane microdomains under the calyx-type presynaptic terminal on E15–17 chick ciliary neurons in vivo.
Figure 2: Segregation of nAChR clusters from clusters of GlyRs and their directly associated protein gephyrin in postsynaptic membrane microdomains, including those under separate cholinergic bouton-type terminals on CG choroid neurons.
Figure 3: Inhibitory GlyR response in CG neurons.
Figure 4: Glycine transporter localization and glycine uptake and release in the CG.

Similar content being viewed by others

References

  1. Zhang, Z. W. & Berg, D.K. Patch-clamp analysis of glycine-induced currents in chick ciliary ganglion neurons. J. Physiol. (Lond.) 487, 395–405 ( 1995).

    Article  CAS  Google Scholar 

  2. Landmesser, L. & Pilar, G. The onset and development of transmission in the chick ciliary ganglion. J. Physiol. (Lond.) 222, 691–713 (1972).

    Article  CAS  Google Scholar 

  3. Landmesser, L. & Pilar, G. Synaptic transmission and cell death during normal ganglionic development. J. Physiol. (Lond.) 241, 737–749 (1974).

    Article  CAS  Google Scholar 

  4. Martin, A. R. & Pilar, G. Dual mode of synaptic transmission in the avian ciliary ganglion. J. Physiol. (Lond.) 168, 443–463 (1963).

    Article  CAS  Google Scholar 

  5. Martin, A. R. & Pilar, G. Transmission through the ciliary ganglion of the chick. J. Physiol. (Lond.) 168, 464 –475 (1963).

    Article  CAS  Google Scholar 

  6. Reiner, A. et al. Neurotransmitter organization of the nucleus of Edinger-Westphal and its projection to the avian ciliary ganglion. Vis. Neurosci. 6, 451–472 ( 1991).

    Article  CAS  Google Scholar 

  7. Engisch, K. L. & Fischbach, G.D. The development of ACh- and GABA-activated currents in embryonic chick ciliary ganglion neurons in the absence of innervation in vivo. J. Neurosci. 12, 1115–1125 (1992).

    Article  CAS  Google Scholar 

  8. Arenella, L. S., Oliva, J. M. & Jacob, M.H. Reduced levels of acetylcholine receptor expression in chick ciliary ganglion neurons developing in the absence of innervation . J. Neurosci. 13, 4525– 4537 (1993).

    Article  CAS  Google Scholar 

  9. Dale, H. Pharmacology and nerve-endings. Proc. R. Soc. Med. (Lond.) 28, 319–332 (1935).

    CAS  Google Scholar 

  10. Nicoll, R. A. & Malenka, R.C. A tale of two transmitters. Science 281, 360–361 ( 1998).

    Article  CAS  Google Scholar 

  11. Jacob, M. H., Lindstrom, J. M. & Berg, D.K. Surface and intracellular distribution of a putative neuronal nicotinic acetylcholine receptor. J. Cell Biol. 103, 205–214 (1986).

    Article  CAS  Google Scholar 

  12. Jacob, M.H. Acetylcholine receptor expression in developing chick ciliary ganglion neurons . J. Neurosci. 11, 1701– 1712 (1991).

    Article  CAS  Google Scholar 

  13. Williams, B. M. et al. The long internal loop of the alpha 3 subunit targets nAChRs to subdomains within individual synapses on neurons in vivo. Nat. Neurosci. 1, 557–562 (1998).

    Article  CAS  Google Scholar 

  14. Jacob, M. H. & Berg, D.K. The ultrastructural localization of α-bungarotoxin binding sites in relation to synapses on chick ciliary ganglion neurons. J. Neurosci. 3, 260– 271 (1983).

    Article  CAS  Google Scholar 

  15. Jacob, M. H., Berg, D. K. & Lindstrom, J.M. Shared antigenic determinant between the Electrophorus acetylcholine receptor and a synaptic component on chick ciliary ganglion neurons. Proc. Natl. Acad. Sci. USA 81, 3223–3227 (1984).

    Article  CAS  Google Scholar 

  16. Vernallis, A. B., Conroy, W. G. & Berg, D.K. Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor sites. Neuron 10, 451–464 (1993).

    Article  CAS  Google Scholar 

  17. Schroder, S., Hoch, W., Becker, C. M., Grenningloh, G. & Betz, H. Mapping of antigenic epitopes on the alpha 1 subunit of the inhibitory glycine receptor. Biochemistry 30 , 42–47 (1991).

    Article  CAS  Google Scholar 

  18. Kirsch, J., Wolters, I., Triller, A. & Betz, H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366, 745–748 ( 1993).

    Article  CAS  Google Scholar 

  19. Colin, I., Rostaing, P., Augustin, A. & Triller, A. Localization of components of glycinergic synapses during rat spinal cord development. J. Comp. Neurol. 398, 359– 372 (1998).

    Article  CAS  Google Scholar 

  20. Feng, G. et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282, 1321–1324 (1998).

    Article  CAS  Google Scholar 

  21. Prior, P. et al. Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8, 1161–1170 (1992).

    Article  CAS  Google Scholar 

  22. Pfeiffer, F., Simler, R., Grenningloh, G. & Betz, H. Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proc. Natl. Acad. Sci. USA 81, 7224–7227 (1984).

    Article  CAS  Google Scholar 

  23. Meyer, G., Kirsch, J., Betz, H. & Langosch, D. Identification of a gephyrin binding motif on the glycine receptor beta subunit. Neuron 15, 563–572 ( 1995).

    Article  CAS  Google Scholar 

  24. Kins, S., Kuhse, J., Laube, B., Betz, H. & Kirsch, J. Incorporation of a gephyrin-binding motif targets NMDA receptors to gephyrin-rich domains in HEK 293 cells. Eur. J. Neurosci. 11, 740–744 ( 1999).

    Article  CAS  Google Scholar 

  25. Zhang, Z. W., Vijayaraghavan, S. & Berg, D.K. Neuronal acetylcholine receptors that bind alpha-bungarotoxin with high affinity function as ligand-gated ion channels. Neuron 12, 167–177 ( 1994).

    Article  CAS  Google Scholar 

  26. Marwitt, R., Pilar, G. & Weakly, J.N. Characterization of two ganglion cell populations in avian ciliary ganglia. Brain Res. 25, 317– 334 (1971).

    Article  CAS  Google Scholar 

  27. McEachern, A. E., Margiotta, J. F. & Berg, D.K. Gamma-Aminobutyric acid receptors on chick ciliary ganglion neurons in vivo and in cell culture. J. Neurosci. 5, 2690–2695 ( 1985).

    Article  CAS  Google Scholar 

  28. Sorimachi, M., Rhee, J. S., Shimura, M. & Akaike, N. Mechanisms of GABA- and glycine-induced increases of cytosolic Ca2+ concentrations in chick embryo ciliary ganglion cells. J. Neurochem. 69, 797–805 (1997).

    Article  CAS  Google Scholar 

  29. McGale, E. H., Pye, I. F., Stonier, C., Hutchinson, E. C. & Aber, G.M. Studies of the inter-relationship between cerebrospinal fluid and plasma amino acid concentrations in normal individuals. J. Neurochem. 29, 291–297 (1977).

    Article  CAS  Google Scholar 

  30. Attwell, D., Barbour, B. & Szatkowski, M. Nonvesicular release of neurotransmitter. Neuron 11, 401–407 ( 1993).

    Article  CAS  Google Scholar 

  31. Zafra, A. F. et al. Glycine transporters are differentially expressed among CNS cells J. Neurosci. 15, 3952– 3969 (1995).

    Article  CAS  Google Scholar 

  32. Liu, W., Leibach, F. H. & Ganapathy, V. Characterization of the glycine transport system GLYT 1 in human placental choriocarcinoma cells (JAR). Biochim. Biophys. Acta 1194, 176–184 ( 1994).

    Article  CAS  Google Scholar 

  33. Pow, D.V. Transport is the primary determinant of glycine content in retinal neurons J. Neurochem. 70, 2628– 2636 (1998).

    Article  CAS  Google Scholar 

  34. Schwartz, E.A. Depolarization without calcium can release gamma-aminobutyric acid from a retinal neuron. Science 238, 350– 355 (1987).

    Article  CAS  Google Scholar 

  35. Coggan, J. S., Paysan, J., Conroy, W. G. & Berg, D.K. Direct recording of nicotinic responses in presynaptic nerve terminals. J. Neurosci. 17, 5798–5806 (1997).

    Article  CAS  Google Scholar 

  36. Dumoulin, A. et al. Presence of the vesicular inhibitory amino acid transporter in GABAergic and glycinergic synaptic terminal boutons. J. Cell Sci. 112, 811–823 ( 1999).

    CAS  PubMed  Google Scholar 

  37. O'Malley, D. M., Sandell, J. H. & Masland, R.H. Co-release of acetylcholine and GABA by the starburst amacrine cells. J. Neurosci. 12, 1394– 1408 (1992).

    Article  CAS  Google Scholar 

  38. Jo, Y. H. & Schlichter, R. Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat. Neurosci. 2, 241–245 (1999).

    Article  CAS  Google Scholar 

  39. Smith, M. A., Stollberg, J., Lindstrom, J. M. & Berg, D.K. Characterization of a component in chick ciliary ganglia that cross-reacts with monoclonal antibodies to muscle and electric organ acetylcholine receptor . J. Neurosci. 5, 2726– 2731 (1985).

    Article  CAS  Google Scholar 

  40. Horch, H. L. & Sargent, P.B. Perisynaptic surface distribution of multiple classes of nicotinic acetylcholine receptors on neurons in the chicken ciliary ganglion. J. Neurosci. 15, 7778–7795 (1995).

    Article  CAS  Google Scholar 

  41. Horch, H. L. & Sargent, P.B. Effects of denervation on acetylcholine receptor clusters on frog cardiac ganglion neurons as revealed by quantitative laser scanning confocal microscopy. J. Neurosci. 16 , 1720–1729 (1996).

    Article  CAS  Google Scholar 

  42. Wang, B. L. & Larsson, L.I. Simultaneous demonstration of multiple antigens by indirect immunofluorescence or immunogold staining. Novel light and electron microscopical double and triple staining method employing primary antibodies from the same species. Histochemistry 83, 47–56 (1985).

    Article  CAS  Google Scholar 

  43. Buckley, K. & Kelly, R.B. Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells . J. Cell Biol. 100, 1284– 1294 (1985).

    Article  CAS  Google Scholar 

  44. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Press, New York, 1989).

  45. Ikonomov, O. C., Kulesa, M. C., Shisheva, A. C. & Jacob, M.H. Innervation and target tissue interactions induce Rab-GDP dissociation inhibitor (GDI) expression during peripheral synapse formation in developing chick ciliary ganglion neurons in situ. J. Neurosci. 18, 6331–6339 (1998).

    Article  CAS  Google Scholar 

  46. Bartel, P., Chien, C. T., Sternglanz, R. & Fields, S. Elimination of false positives that arise in using the two-hybrid system. Biotechniques 14, 920–924 (1993).

    CAS  PubMed  Google Scholar 

  47. Hollenberg, S. M., Sternglanz, R., Cheng, P. F. & Weintraub, H. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell Biol. 15, 3813–3822 (1995).

    Article  CAS  Google Scholar 

  48. Jacob, M. H. & Berg, D.K. The distribution of acetylcholine receptors in chick ciliary ganglion neurons following disruption of ganglionic connections. J. Neurosci. 8, 3838– 3849 (1988).

    Article  CAS  Google Scholar 

  49. Boyd, R. T., Jacob, M. H., McEachern, A. E., Caron, S. & Berg, D.K. Nicotinic acetylcholine receptor mRNA in dorsal root ganglion neurons. J. Neurobiol. 22, 1–14 (1991).

    Article  CAS  Google Scholar 

  50. Ryan, T. A. et al. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11, 713– 724 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Heinrich Betz for providing glycine receptor and gephyrin antibodies and clones, Yimen Ge (Massachusetts General Hospital, Harvard Medical School) for assistance with the laser-scanning confocal microscope and Kathleen Dunlap, Daniel Jay and Tim Turner for advice and comments on the manuscript. This work was supported by NIH grant 21725 to M.H.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele H. Jacob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsen, G., Williams, B., Allaire, P. et al. Receptors with opposing functions are in postsynaptic microdomains under one presynaptic terminal. Nat Neurosci 3, 126–132 (2000). https://doi.org/10.1038/72066

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing