Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy

Abstract

Autoimmunity to antigens of the central nervous system is usually considered detrimental. T cells specific to a central nervous system self antigen, such as myelin basic protein, can indeed induce experimental autoimmune encephalomyelitis, but such T cells may nevertheless appear in the blood of healthy individuals. We show here that autoimmune T cells specific to myelin basic protein can protect injured central nervous system neurons from secondary degeneration. After a partial crush injury of the optic nerve, rats injected with activated anti–myelin basic protein T cells retained approximately 300% more retinal ganglion cells with functionally intact axons than did rats injected with activated T cells specific for other antigens. Electrophysiological analysis confirmed this finding and suggested that the neuroprotection could result from a transient reduction in energy requirements owing to a transient reduction in nerve activity. These findings indicate that T–cell autoimmunity in the central nervous system, under certain circumstances, can exert a beneficial effect by protecting injured neurons from the spread of damage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T–cell presence in injured optic nerve 1 week after injury.
Figure 2: T cells specific to MBP, but not to OVA or p277 of hsp60, protect neurons from secondary degeneration.
Figure 3: Photomicrographs of retrogradely labeled retinas of injured optic nerves of rats.
Figure 4: a, Clinical severity of EAE is not influenced by an optic nerve crush injury.
Figure 5: T cells specific to p51–70 of MBP protect neurons from secondary degeneration.
Figure 6: Anti–MBP T cells increase the CAP amplitude of injured optic nerves.

Similar content being viewed by others

References

  1. Streilein, J.W. Immune privilege as the result of local tissue barriers and immunosuppressive microenvironments. Curr. Opin. Immunol. 5, 428–432 (1993).

    Article  CAS  Google Scholar 

  2. Streilein, J.W. Unraveling immune privilege. Science 270, 1158–1159 (1995).

    Article  CAS  Google Scholar 

  3. Lazarov Spiegler, O. et al. Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB J. 10, 1296–1302 (1996).

    Article  CAS  Google Scholar 

  4. Rapalino, O. et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nature Med. 4, 814–821 (1998).

    Article  CAS  Google Scholar 

  5. Hickey, W.F., Hsu, B.L. & Kimura, H. T7–lymphocyte entry into the central nervous system. J. Neurosci. Res. 28, 254– 260 (1991).

    Article  CAS  Google Scholar 

  6. Ben Nun, A., Wekerle, H. & Cohen, I.R. The rapid isolation of clonable antigen–specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur. J. Immunol. 11, 195–199 (1981).

    Article  CAS  Google Scholar 

  7. Ota, K. et al. T–cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346, 183–187 (1990).

    Article  CAS  Google Scholar 

  8. Martin, R. Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis and their application for new therapeutic strategies. J. Neural Transm. Suppl. 49, 53–67 (1997).

    CAS  PubMed  Google Scholar 

  9. Burns, J., Rosenzweig, A., Zweiman, B. & Lisak, R.P. Isolation of myelin basic protein–reactive T–cell lines from normal human blood. Cell. Immunol. 81, 435– 440 (1983).

    Article  CAS  Google Scholar 

  10. Pette, M. et al. Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA–DR2 products by T lymphocytes of multiple–sclerosis patients and healthy donors. Proc. Natl. Acad. Sci. USA 87, 7968–7972 (1990).

    Article  CAS  Google Scholar 

  11. Martin, R. et al. Fine specificity and HLA restriction of myelin basic protein–specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J. Immunol. 145, 540–548 (1990).

    CAS  PubMed  Google Scholar 

  12. Schluesener, H.J. & Wekerle, H. Autoaggressive T lymphocyte lines recognizing the encephalitogenic region of myelin basic protein: in vitro selection from unprimed rat T lymphocyte populations. J. Immunol. 135, 3128–3133 (1985).

    CAS  Google Scholar 

  13. Hirschberg, D.L. et al. Accumulation of passively transferred primed T cells independently of their antigen specificity following central nervous system trauma. J. Neuroimmunol. 89, 88–96 (1998).

    Article  CAS  Google Scholar 

  14. Faden, A.I. & Salzman, S. Pharmacological strategies in CNS trauma. Trends Pharmacol. Sci. 13, 29– 35 (1992).

    Article  CAS  Google Scholar 

  15. Faden, A.I. Experimental neurobiology of central nervous system trauma. Crit. Rev. Neurobiol. 7, 175–186 (1993).

    CAS  PubMed  Google Scholar 

  16. McIntosh, T.K. Novel pharmacologic therapies in the treatment of experimental traumatic brain injury: a review. J. Neurotrauma 10, 215 –261 (1993).

    Article  CAS  Google Scholar 

  17. Lynch, D.R. & Dawson, T.M. Secondary mechanisms in neuronal trauma. Curr. Opin. Neurol. 7, 510– 516 (1994).

    Article  CAS  Google Scholar 

  18. Bazan, N.G., Rodriguez de Turco, E.B. & Allan, G. Mediators of injury in neurotrauma: intracellular signal transduction and gene expression. J. Neurotrauma 12, 791–814 (1995).

    Article  CAS  Google Scholar 

  19. Liu, D., Yang, R., Yan, X. & McAdoo, D.J. Hydroxyl radicals generated in vivo kill neurons in the rat spinal cord: electrophysiological, histological, and neurochemical results. J. Neurochem. 62, 37–44 (1994).

    Article  CAS  Google Scholar 

  20. Yoshino, A., Hovda, D.A., Kawamata, T., Katayama, Y. & Becker, D.P. Dynamic changes in local cerebral glucose utilization following cerebral concussion in rats: evidence of a hyper– and subsequent hypometabolic state. Brain Res. 561, 106–119 (1991).

    Article  CAS  Google Scholar 

  21. Hovda, D.A., Yoshino, A., Kawamata, T., Katayama, Y. & Becker, D.P. Diffuse prolonged depression of cerebral oxidative metabolism following concussive brain injury in the rat: a cytochrome oxidase histochemistry study. Brain Res. 567, 1–10 (1991).

    Article  CAS  Google Scholar 

  22. Zivin, J.A. & Choi, D.W. Stroke therapy. Sci. Am. 265, 56–63 ( 1991).

    Article  CAS  Google Scholar 

  23. Yoles, E. et al. GM1 reduces injury–induced metabolic deficits and degeneration in the rat optic nerve. Invest. Ophthalmol. Vis. Sci. 33, 3586–3591 (1992).

    CAS  PubMed  Google Scholar 

  24. Yoles, E. & Schwartz, M. N–methyl–D–aspartate–receptor antagonist protects neurons from secondary degeneration after partial optic nerve crush. J. Neurotrauma 14, 665– 675 (1997).

    Article  CAS  Google Scholar 

  25. Yoles, E. & Schwartz, M. Degeneration of spared axons following partial white matter lesion: Implications for optic nerve neuropathies. Exp. Neurol. 153, 1–7 ( 1998).

    Article  CAS  Google Scholar 

  26. Naparstek, Y. et al. T lymphocyte lines producing or vaccinating against autoimmune encephalomyelitis (EAE). Functional activation induces peanut agglutinin receptors and accumulation in the brain and thymus of line cells. Eur. J. Immunol. 13, 418–423 ( 1983).

    Article  CAS  Google Scholar 

  27. Popovich, P.G., Stokes, B.T. & Whitacre, C.C. Concept of autoimmunity following spinal cord injury: possible roles for T lymphocytes in the traumatized central nervous system. J. Neurosci. Res. 45, 349– 363 (1996).

    Article  CAS  Google Scholar 

  28. Mor, F. & Cohen, I.R. Pathogenicity of T cells responsive to diverse cryptic epitopes of myelin basic protein in the Lewis rat. J. Immunol. 155, 3693–3699 (1995).

    CAS  PubMed  Google Scholar 

  29. Savio, T. & Schwab, M.E. Rat CNS white matter, but not gray matter, is nonpermissive for neuronal cell adhesion and fiber outgrowth. J. Neurosci. 9, 1126–1133 (1989).

    Article  CAS  Google Scholar 

  30. Lotan, M. & Schwartz, M. Cross talk between the immune system and the nervous system in response to injury: implications for regeneration. FASEB J. 8, 1026–1033 (1994).

    Article  CAS  Google Scholar 

  31. Zamvil, S.S. & Steinman, L. The T lymphocyte in experimental allergic encephalomyelitis. Annu. Rev. Immunol. 8, 579–621 (1990).

    Article  CAS  Google Scholar 

  32. Palladini, G., Grossi, M., Maleci, A., Lauro, G.M. & Guidetti, B. Immunocomplexes in rat and rabbit spinal cord after injury. Exp. Neurol. 95, 639– 651 (1987).

    Article  CAS  Google Scholar 

  33. Mizrachi, Y. et al. Systemic humoral factors participating in the course of spinal cord injury. Paraplegia 21, 287– 293 (1983).

    CAS  PubMed  Google Scholar 

  34. Cohen, I.R. Autoimmunity to chaperonins in the pathogenesis of arthritis and diabetes. Annu. Rev. Immunol. 9, 567– 589 (1991).

    Article  CAS  Google Scholar 

  35. Mor, F. & Cohen, I.R. T cells in the lesion of experimental autoimmune encephalomyelitis. Enrichment for reactivities to myelin basic protein and to heat shock proteins. J. Clin. Invest. 90, 2447–2455 (1992).

    Article  CAS  Google Scholar 

  36. Ransom, B.R., Stys, P.K. & Waxman, S.G. The pathophysiology of anoxic injury in central nervous system white matter. Stroke 21, 11 (suppl), III52–57 (1990).

    CAS  PubMed  Google Scholar 

  37. Barone, F.C., Feuerstein, G.Z. & White, R.F. Brain cooling during transient focal ischemia provides complete neuroprotection. Neurosci. Biobehav. Rev. 21, 31–44 (1997).

    Article  CAS  Google Scholar 

  38. Yarom, Y. et al. Immunospecific inhibition of nerve conduction by T lymphocytes reactive to basic protein of myelin. Nature 303, 246–247 (1983).

    Article  CAS  Google Scholar 

  39. Koller, H., Siebler, M. & Hartung, H.P. Immunologically induced electrophysiological dysfunction: implications for inflammatory diseases of the CNS and PNS. Prog. Neurobiol. 52, 1–26 ( 1997).

    Article  CAS  Google Scholar 

  40. Meeson, A.P., Piddlesden, S., Morgan, B.P. & Reynolds, R. The distribution of inflammatory demyelinated lesions in the central nervous system of rats with antibody–augmented demyelinating experimental allergic encephalomyelitis. Exp. Neurol. 129, 299 –310 (1994).

    Article  CAS  Google Scholar 

  41. Ehrhard, P.B., Erb, P., Graumann, U. & Otten, U. Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4–positive T–cell clones. Proc. Natl. Acad. Sci. USA 90, 10984–10988 ( 1993).

    Article  CAS  Google Scholar 

  42. Lambiase, A. et al. Human CD4+ T cell clones produce and release nerve growth factor and express high–affinity nerve growth factor receptors. J. Allergy Clin. Immunol. 100, 408– 414 (1997).

    Article  CAS  Google Scholar 

  43. Santambrogio, L. et al. Nerve growth factor production by lymphocytes. J. Immunol. 153, 4488–4495 (1994).

    CAS  PubMed  Google Scholar 

  44. Cohen, I.R. The cognitive paradigm and the immunological homunculus. Immunol. Today 13, 490–494 ( 1992).

    Article  CAS  Google Scholar 

  45. Lider, O., Reshef, T., Beraud, E., Ben Nun, A. & Cohen, I.R. Anti–idiotypic network induced by T cell vaccination against experimental autoimmune encephalomyelitis. Science 239, 181–183 (1988).

    Article  CAS  Google Scholar 

  46. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 ( 1994).

    Article  CAS  Google Scholar 

  47. Hirshfeld, H., Teitelbaum, D., Arnon, R. & Sela, M. Basic encephalitogenic protein: a simplified purification on sulfoethyl–Sephadex. FEBS Lett. 7, 317 ( 1970).

    Article  CAS  Google Scholar 

  48. Elias, D. et al. Vaccination against autoimmune mouse diabetes with a T–cell epitope of the human 65–kDa heat shock protein. Proc. Natl. Acad. Sci. USA 88, 3088–3091 (1991).

    Article  CAS  Google Scholar 

  49. Mor, F. & Cohen, I.R. Shifts in the epitopes of myelin basic protein recognized by Lewis rat T cells before, during, and after the induction of experimental autoimmune encephalomyelitis. J. Clin. Invest. 92, 2199–2206 ( 1993).

    Article  CAS  Google Scholar 

  50. Gillis, S., Ferm, M.M., Ou, W. & Smith, K.A. T cell growth factor: parameters of production and a quantitative microassay for activity. J. Immunol. 120, 2027– 2032 (1978).

    CAS  PubMed  Google Scholar 

  51. Duvdevani, R. et al. Graded crush of the rat optic nerve as a brain injury model: combining electrophysiological, histological and behavioral outcome. Restor. Neurol. Neurosci. 2, 31–38 (1990).

    CAS  PubMed  Google Scholar 

  52. Hunig, T., Wallny, H.J., Hartley, J.K., Lawetzky, A. & Tiefenthaler, G. A monoclonal antibody to a constant determinant of the rat T cell antigen receptor that induces T cell activation. Differential reactivity with subsets of immature and mature T lymphocytes. J. Exp. Med. 169, 73– 86 (1989).

    Article  CAS  Google Scholar 

  53. Yoles, E., Belkin, M. & Schwartz, M. HU–211, a nonpsychotropic cannabinoid, produces short– and long–term neuroprotection after optic nerve axotomy. J. Neurotrauma 13, 49– 57 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Smith and P. Taylor for editorial assistance, and I. Friedmann for help with graphics. I.R. Cohen is the incumbent of the Mauerberger Chair in Immunology, the director of the Robert Koch–Minerva Center for Research in Autoimmune Disease and the director of the Center for the Study of Emerging Diseases. M.S. holds the Maurice and Ilse Katz Professorial Chair in Neuroimmunology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moalem, G., Leibowitz–Amit, R., Yoles, E. et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5, 49–55 (1999). https://doi.org/10.1038/4734

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4734

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing