Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fringe modulates Notch–ligand interactions

Abstract

The Notch family of transmembrane receptor proteins mediate developmental cell-fate decisions1, and mutations in mammalian Notch genes have been implicated in leukaemia, breast cancer, stroke and dementia2,3,4. During wing development in Drosophila, the Notch receptor is activated along the border between dorsal and ventral cells5,6,7, leading to the specification of specialized cells that express Wingless (Wg) and organize wing growth and patterning6,8,9. Three genes, fringe (fng), Serrate (Ser) and Delta (Dl), are involved in the cellular interactions leading to Notch activation7,9,10,11,12,13,14,15. Ser and Dl encode transmembrane ligands for Notch16,17, whereas fng encodes a pioneer protein10. We have investigated the relationship between these genes by a combination of expression and coexpression studies in the Drosophila wing. We found that Ser and Dl maintain each other's expression by a positive feedback loop. fng is expressed specifically by dorsal cells and functions to position and restrict this feedback loop to the developing dorsal–ventral boundary. This is achieved by fng through a cell-autonomous mechanism that inhibits a cell's ability to respond to Serrate protein and potentiates its ability to respond to Delta protein.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ser and Dl expression and feedback regulation in the wing imaginal disc.
Figure 2: Dl expression induced by Fng and Ser.
Figure 3: Effects of Fng on Ser and Dl activity in the wing imaginal disc.
Figure 4: Wing phenotypes associated with Fng, Ser and Dl misexpression.
Figure 5: Immunolocalization of Fng protein.
Figure 6: Schematic representation of signalling interactions at the dorsal–ventral compartment border.

Similar content being viewed by others

References

  1. Artavanis-Tsakonas, S., Matsuno, K. & Fortini, M. Notch signaling. Science 268, 225–230 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Joutel, A. et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707–710 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Robbins, J., Blondel, B. J., Gallahan, D. & Callahan, R. Mouse mammary tumor gene int-3: a member of the Notch gene family transforms mammary epithelial cells. J. Virol. 66, 2594–2599 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. de Celis, J. F. & García-Bellido, A. Roles of the Notch gene in Drosophila wing morphogenesis. Mech. Dev. 46, 109–122 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Rulifson, E. J. & Blair, S. S. Notch regulates wingless expression and is not required for reception of the paracrine wingless signal during wing margin neurogenesis in Drosophila. Development 121, 2813–2824 (1995).

    CAS  PubMed  Google Scholar 

  7. de Celis, J. F., García-Bellido, A. & Bray, S. J. Activation and function of Notch at the dorsal-ventral boundary of the wing imaginal disc. Development 122, 359–369 (1996).

    CAS  PubMed  Google Scholar 

  8. Zecca, M., Basler, K. & Struhl, G. Direct and long range action of a wingless morphogen gradient. Cell 87, 833–844 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Diaz-Benjumea, F. J. & Cohen, S. M. Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development 121, 4215–4225 (1995).

    CAS  PubMed  Google Scholar 

  10. Irvine, K. D. & Wieschaus, E. fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 79, 595–606 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Kim, J., Irvine, K. D. & Carroll, S. B. Cell interactions and inductive signals at the dorsal/ventral boundary of the devleoping Drosophila wing. Cell 82, 795–802 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Speicher, S. A., Thomas, U., Hinz, U. & Knust, E. The Serrate locus of Drosophila and its role in morphogenesis of the wing imaginal discs: control of cell proliferation. Development 120, 535–544 (1994).

    CAS  PubMed  Google Scholar 

  13. Couso, J. P., Knust, E. & Martinez Arias, S. Serrate and wingless cooperate to induce vestigial gene expression and wing formation in Drosophila. Curr. Biol. 5, 1437–1448 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Doherty, D., Feger, G., Younger-Sheperd, S., Jan, L. Y. & Jan, Y. N. Delta is a ventral to dorsal signal complementary to Serrate, another Notch ligand, in Drosophila wing formation. Genes Dev. 10, 421–434 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Jönsson, F. & Knust, E. Distinct functions of the Drosophila genes Serrate and Delta revealed by ectopic expression durign wing development. Dev. Genes Evol. 206, 91–101 (1996).

    Article  PubMed  Google Scholar 

  16. Fehon, R. G. et al. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61, 523–534 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Rebay, I. et al. Specific EGF repeats of Notch mediate interactions with Delta and Serrate: Implications for Notch as a multifunctional receptor. Cell 67, 687–699 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Hinz, U., Giebel, B. & Campos-Ortega, J. The basic helix-loop-helix domain of Drosophila lethal scute protein is sufficient for proneural function and activates neurogenic genes. Cell 76, 77–87 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  20. Thomas, U., Speicher, S. A. & Knust, E. The Drosophila gene Serrate encodes an EGF-like transmembrane protein with a complex expression pattern in embryos and wing discs. Development 111, 749–761 (1991).

    CAS  PubMed  Google Scholar 

  21. Kopczynski, C. C. & Muskavitch, M. A. T. Complex spatio-temporal accumulation of alternative transcripts from the neurogenic gene Delta during embryogenesis. Development 107, 623–636 (1989).

    CAS  PubMed  Google Scholar 

  22. Struhl, G., Fitzgerald, K. & Greenwald, I. Intrinsic activity of the Lin-12 and Notch intracellular domains in vivo. Cell 74, 331–345 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Kim, J. et al. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature 382, 133–138 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Fleming, R. J., Gu, Y. & Hukriede, N. A. Serrate -mediated activation of Notch is specifically blocked by the product of the gene fringe in the dorsal compartment of the Drosophila wing imaginal disc. Development (in the press).

  25. Wu, J. Y., Wen, L., Zhang, W.-J. & Rao, Y. The secreted product of Xenopus gene lunatic Fringe, a vertebrate signaling molecule. Science 273, 355–358 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnston, S. H. et al. Afamily of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development 124, 2245–2254 (1997).

    CAS  PubMed  Google Scholar 

  27. Laufer, E. et al. Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature 386, 366–373 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Rodriguez-Esteban, C. et al. Radical fringe positions the apical ectodermel ridge at the dorsoventral boundary of the vertebrate limb. Nature 386, 360–366 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Lawrence, P. A. & Struhl, G. Morphogens, compartments, and pattern: Lessons from Drosophila? Cell 85, 951–961 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Meinhardt, H. Cell determination boundaries as organizing regions for secondary embryonic fields. Dev. Biol. 96, 375–385 (1983).

    Article  CAS  PubMed  Google Scholar 

  31. Koelle, M. R. et al. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67, 59–77 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Knust, D. Doherty, S. Shepard, S. Artavanis-Tsakonas, R. Flemming, M.Muskavitch, R. Nusse, S. Carroll, N. Perrimon, L. Cherbas, C. Thummel, E. Parker and the Bloomington Drosophila Stock Center for Drosophila stocks, antibodies, plasmids, cultured cell lines, and advice; R. Flemming for communicating results before publication; and C. Rauskolb, E. Wieschaus, T.Vogt, R. Padgett, G. Struhl and R. Steward for comments on the manuscript. This work was supported by an ACS junior faculty research award from the Cancer Institute of New Jersey, a grant from the Charles and Joanna Busch Memorial Fund at Rutgers, The State University, and a grant from the NIGMS, NIH to K.D.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Irvine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panin, V., Papayannopoulos, V., Wilson, R. et al. Fringe modulates Notch–ligand interactions. Nature 387, 908–912 (1997). https://doi.org/10.1038/43191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43191

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing