Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chiral discrimination using piezoelectric and optical gas sensors

Abstract

Odour perception in humans can sometimes discriminate different enantiomers of a chiral compound1,2,3, such as limonene. Chiral discrimination represents one of the greatest challenges in attempts to devise selective and sensitive gas sensors. The importance of such discrimination for pharmacology is clear, as the physiological effect of enantiomers of drugs and other biologically active molecules may differ significantly4. Here we describe two different sensor systems that are capable of recognizing different enantiomers and of qualitatively monitoring the enantiomeric composition of amino-acid derivatives and lactates in the gas phase. One sensor detects changes in mass, owing to binding of the compound being analysed (the ‘analyte’), by thickness shear-mode resonance5,6,7; the other detects changes in the thickness of a surface layer by reflectometric interference spectroscopy8,9,10. Both devices use the two enantiomers of a chiral polymeric receptor, and offer rapid on-line detection of chiral species with high selectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The principle of chiral recognition by gas sensors: chiral discrimination by preferential sorption of the enantiomers of N-trifluoroacetyl-alanin methyl ester (N-TFA-Ala-OMe) into enantioselective (R)- and (S)-octyl-Chirasil-Val polymers.
Figure 2: Signal transduction techniques.
Figure 3: Normalized (with regard to the frequency shift due to polymer deposition) TSMR responses to different concentrations (p/p0 adjusted pressure with respect to the saturation vapour pressure at 298K) of (R)-, (S)- and racemic N-trifluoroacetyl-alanin methyl ester.
Figure 4: Top, relative RIFS-sensor signals (normalized with regard to the layer thickness without analyte gas, as described in the text of two chiral sensors ((S)-sensor, solid line; (R)-sensor, dotted line) and an additional SE-30-sensor (dashed line) upon exposure to different enantiomeric compositions of methyl lactate.

Similar content being viewed by others

References

  1. Ohloff, G. Scent and Fragrances: The Fascination of Odors and their Chemical Perspectives (Springer, New York, (1994)).

    Book  Google Scholar 

  2. Leitereg, T. J., Guadagni, D. G., Harris, J., Mon, T. R. & Teranishi, R. Evidence for the difference between the odors of the optical isomers (+)- and (−)-carvone. Nature 230, 455–456 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Friedman, L. & Miller, J. G. Odor in congruity and chirality. Science 172, 1044–1046 (1971).

    Article  ADS  CAS  Google Scholar 

  4. Franks, N. P. & Lieb, W. R. Stereospecific effects of inhalation general anesthetic optical isomers on nerve ion channels. Science 254, 427–430 (1991); Molecular and cellular mechanisms of general anaesthesia. Nature 367, 607–613 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Grate, J. W., Martin, S. J. & White, R. M. Acoustic wave microsensors, Part I and II. Anal. Chem. 65, 940A–948A, 987A–996A (1993).

    Article  Google Scholar 

  6. Nieuwenhuizen, M. S. & Venema, A. Surface acoustic wave chemical sensors. Sens. Mater. 5, 261–300 (1989).

    Google Scholar 

  7. Bodenhöfer, K., Hierlemann, A., Noetzel, G., Weimar, U. & Göpel, W. Performances of mass-sensitive devices for gas sensing: thickness shear mode and surface acoustic wave transducers. Anal. Chem. 68, 2210–2218 (1996).

    Article  Google Scholar 

  8. Gauglitz, G., Brecht, A., Kraus, G. & Nahm, W. Chemical and biochemical sensors based on interferometry at thin layers. Sens. Actuators B 11, 21–27 (1993).

    Article  CAS  Google Scholar 

  9. Brecht, A. & Gauglitz, G. Optimised layer system for immunosensors based on the RIfS transducer. Fresenius J. Anal. Chem. 349, 360–366 (1994).

    Article  CAS  Google Scholar 

  10. Piehler, J., Brecht, A. & Gauglitz, A. Affinity detection of low molecular weight analytes. Anal. Chem. 68, 139–143 (1996).

    Article  CAS  Google Scholar 

  11. Anholt, R. R. H. Primary events in olfactory reception. Trends Biochem. Sci. 12, 58–62 (1987).

    Article  CAS  Google Scholar 

  12. Rawn, J. D. Biochemistry (Patterson, Burlington, (1989)).

    Google Scholar 

  13. Frank, H., Nicholson, G. J. & Bayer, E. J. Rapid gas chromatographic separation of amino acid enantiomers with a novel chiral stationary phase. Chromatogr. Sci. 15, 174–176 (1977).

    Article  CAS  Google Scholar 

  14. Koppenhoefer, B., Mühleck, U. & Lohmiller, K. Backbone modification of Chirasil-Val: effect of nonpolar side chains on enantiomer separation in GC. Chromatographia 40, 718–723 (1995).

    Article  CAS  Google Scholar 

  15. Trettin, U. Wechselwirkung von Enantiomeren in unverdünnten Flüssigkeiten. Thesis, Univ. Tübingen((1993)).

  16. Schurig, V. Enantiomer analysis by complexation GC: scope, merits, limitations. J. Chromatogr. 441, 135–153 (1988).

    Article  CAS  Google Scholar 

  17. Meinwald, J. et al. Inhalational anesthetics stereochemistry: Optical resolution of halothane, enflurane and isoflurane. Science 251, 560–561 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Koppenhoefer, B. & Bayer, E. Chiral recognition in the resolution of enantiomers by GLC. Chromatographia 19, 123–130 (1984).

    Article  CAS  Google Scholar 

  19. König, W. A. Separation of enantiomers by capillary GC with chiral stationary phases J. High Resolut. Chromatogr. Chromatogr. Commun. 5, 588–595 (1982).

    Article  Google Scholar 

  20. Kubo, Y., Maeda, S., Tokita, S. & Kubo, M. Colorimetric chiral recognition by a molecular sensor. Nature 382, 522–524 (1996).

    Article  ADS  CAS  Google Scholar 

  21. James, T. D., Sandanayake, K. R. A. S. & Shinkai, S. Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature 374, 345–347 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Ide, J., Nakamoto, T. & Moriizumi, T. Discrimination of aromatic optical isomers using quartz resonator sensors. Sens. Actuators A 49, 73–78 (1995).

    Article  CAS  Google Scholar 

  23. Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155, 206–222 (1959).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank H.-G. Brendle, R. Schlunk and B. Christian at the Institute of Organic Chemistry of the University of Tübingen for providing the enantioselective polymers and the chiral analyte N-TFA-Ala-OMe. This work was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Gpel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodenhöfer, K., Hierlemann, A., Seemann, J. et al. Chiral discrimination using piezoelectric and optical gas sensors. Nature 387, 577–580 (1997). https://doi.org/10.1038/42426

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42426

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing